Source code for CPAC.seg_preproc.utils

# Import packages
import os
from CPAC.pipeline import nipype_pipeline_engine as pe
import scipy.ndimage as nd
import numpy as np
import nibabel as nb


[docs]def check_if_file_is_empty(in_file): """Raise exception if regressor fie is empty. Parameters ---------- in_file : nii file (string) regressor file Returns ------- in_file : string return same file """ import nibabel as nb import numpy as np nii = nb.load(in_file) data = nii.get_data() if data.size == 0 or np.all(data == 0) or np.all(data == np.nan): raise ValueError('File {0} is empty. Use a lower threshold or turn ' 'off regressors.'.format(in_file)) return in_file
[docs]def pick_wm_prob_0(probability_maps): """Returns the csf probability map from the list of segmented probability maps Parameters ---------- probability_maps : list (string) List of Probability Maps Returns ------- file : string Path to segment_prob_0.nii.gz is returned """ if isinstance(probability_maps, list): if len(probability_maps) == 1: probability_maps = probability_maps[0] for filename in probability_maps: if filename.endswith("prob_0.nii.gz"): return filename return None
[docs]def pick_wm_prob_1(probability_maps): """Returns the gray matter probability map from the list of segmented probability maps Parameters ---------- probability_maps : list (string) List of Probability Maps Returns ------- file : string Path to segment_prob_1.nii.gz is returned """ if isinstance(probability_maps, list): if len(probability_maps) == 1: probability_maps = probability_maps[0] for filename in probability_maps: if filename.endswith("prob_1.nii.gz"): return filename return None
[docs]def pick_wm_prob_2(probability_maps): """Returns the white matter probability map from the list of segmented probability maps Parameters ---------- probability_maps : list (string) List of Probability Maps Returns ------- file : string Path to segment_prob_2.nii.gz is returned """ if isinstance(probability_maps, list): if len(probability_maps) == 1: probability_maps = probability_maps[0] for filename in probability_maps: if filename.endswith("prob_2.nii.gz"): return filename return None
[docs]def pick_wm_class_0(tissue_class_files): """Returns the csf tissue class file from the list of segmented tissue class files Parameters ---------- tissue_class_files : list (string) List of tissue class files Returns ------- file : string Path to segment_seg_0.nii.gz is returned """ if isinstance(tissue_class_files, list): if len(tissue_class_files) == 1: tissue_class_files = tissue_class_files[0] for filename in tissue_class_files: if filename.endswith("seg_0.nii.gz"): return filename return None
[docs]def pick_wm_class_1(tissue_class_files): """Returns the gray matter tissue class file from the list of segmented tissue class files Parameters ---------- tissue_class_files : list (string) List of tissue class files Returns ------- file : string Path to segment_seg_1.nii.gz is returned """ if isinstance(tissue_class_files, list): if len(tissue_class_files) == 1: tissue_class_files = tissue_class_files[0] for filename in tissue_class_files: if filename.endswith("seg_1.nii.gz"): return filename return None
[docs]def pick_wm_class_2(tissue_class_files): """Returns the white matter tissue class file from the list of segmented tissue class files Parameters ---------- tissue_class_files : list (string) List of tissue class files Returns ------- file : string Path to segment_seg_2.nii.gz is returned """ if isinstance(tissue_class_files, list): if len(tissue_class_files) == 1: tissue_class_files = tissue_class_files[0] for filename in tissue_class_files: if filename.endswith("seg_2.nii.gz"): return filename return None
[docs]def mask_erosion(roi_mask=None, skullstrip_mask=None, mask_erosion_mm=None, mask_erosion_prop=None): """Returns eroded segment mask and skull-stripped brain mask # This functionality is adapted from poldracklab/niworkflows: # https://github.com/poldracklab/niworkflows/blob/master/niworkflows/interfaces/utils.py # https://fmriprep.readthedocs.io/ # https://poldracklab.stanford.edu/ # We are temporarily maintaining our own copy for more granular control. Parameters ---------- roi_mask : string Path to binarized segment mask skullstrip_mask : string Path to skull-stripped brain mask mask_erosion_prop : float Proportion of erosion skull-stripped brain mask Returns ------- output_roi_mask : string Path to eroded segment mask eroded_skullstrip_mask : string Path to eroded skull-stripped brain mask """ skullstrip_mask_img = nb.load(skullstrip_mask) skullstrip_mask_data = skullstrip_mask_img.get_fdata() roi_mask_img = nb.load(roi_mask) roi_mask_data = roi_mask_img.get_fdata() erode_in = (mask_erosion_mm is not None and mask_erosion_mm > 0 or mask_erosion_prop is not None and mask_erosion_prop < 1 and mask_erosion_prop > 0) if erode_in: if mask_erosion_mm: iter_n = max( int(mask_erosion_mm / max( skullstrip_mask_img.header.get_zooms() )), 1) skullstrip_mask_data = nd.binary_erosion( skullstrip_mask_data, iterations=iter_n) else: orig_vol = np.sum(skullstrip_mask_data > 0) while ( np.sum(skullstrip_mask_data > 0) / (orig_vol*1.0) > mask_erosion_prop ): skullstrip_mask_data = nd.binary_erosion( skullstrip_mask_data, iterations=1) roi_mask_data[~skullstrip_mask_data] = 0 hdr = roi_mask_img.get_header() output_roi_mask_img = nb.Nifti1Image(roi_mask_data, header=hdr, affine=roi_mask_img.get_affine()) output_roi_mask = os.path.join(os.getcwd(), 'segment_tissue_eroded_mask.nii.gz') output_roi_mask_img.to_filename(output_roi_mask) hdr = skullstrip_mask_img.get_header() output_skullstrip_mask_img = nb.Nifti1Image( skullstrip_mask_data, header=hdr, affine=skullstrip_mask_img.get_affine()) eroded_skullstrip_mask = os.path.join(os.getcwd(), 'eroded_skullstrip_mask.nii.gz') output_skullstrip_mask_img.to_filename(eroded_skullstrip_mask) return output_roi_mask, eroded_skullstrip_mask
# This functionality is adapted from poldracklab/niworkflows: # https://github.com/poldracklab/niworkflows/blob/master/niworkflows/interfaces/utils.py # https://fmriprep.readthedocs.io/ # https://poldracklab.stanford.edu/ # We are temporarily maintaining our own copy for more granular control.
[docs]def erosion(roi_mask=None, erosion_mm=None, erosion_prop=None): """Returns eroded tissue segment mask Parameters ---------- roi_mask : string Path to binarized segment (ROI) mask erosion_prop : float Proportion of erosion segment mask Returns ------- eroded_roi_mask : string Path to eroded segment mask """ roi_mask_img = nb.load(roi_mask) roi_mask_data = roi_mask_img.get_fdata() orig_vol = np.sum(roi_mask_data > 0) erode_out = (erosion_mm is not None and erosion_mm > 0 or erosion_prop is not None and erosion_prop < 1 and erosion_prop > 0) if erode_out: if erosion_mm: iter_n = max( int(erosion_mm / max(roi_mask_img.header.get_zooms())), 1 ) iter_n = int(erosion_mm / max(roi_mask_img.header.get_zooms())) roi_mask_data = nd.binary_erosion(roi_mask_data, iterations=iter_n) else: while np.sum(roi_mask_data > 0) / (orig_vol*1.0) > erosion_prop: roi_mask_data = nd.binary_erosion(roi_mask_data, iterations=1) hdr = roi_mask_img.get_header() output_img = nb.Nifti1Image(roi_mask_data, header=hdr, affine=roi_mask_img.get_affine()) eroded_roi_mask = os.path.join(os.getcwd(), 'segment_tissue_mask.nii.gz') output_img.to_filename(eroded_roi_mask) return eroded_roi_mask
[docs]def hardcoded_antsJointLabelFusion(anatomical_brain, anatomical_brain_mask, template_brain_list, template_segmentation_list): """run antsJointLabelFusion.sh Parameters ---------- anatomical_brain : string (nifti file) Target image to be labeled. anatomical_brain_mask : string (nifti file) Target mask image template_brain_list : list Atlas to be warped to target image. template_segmentation_list : list Labels corresponding to atlas. Returns ------- multiatlas_Intensity : string (nifti file) multiatlas_Labels : string (nifti file) """ import os import subprocess cmd = ["${ANTSPATH}${ANTSPATH:+/}antsJointLabelFusion.sh"] cmd.append( " -d 3 -o ants_multiatlas_ -t {0} -x {1} -y b -c 0".format( anatomical_brain, anatomical_brain_mask)) if (not len(template_brain_list) == len(template_segmentation_list)): err_msg = '\n\n[!] C-PAC says: Please check ANTs Prior-based ' \ 'Segmentation setting. For performing ANTs Prior-based ' \ 'segmentation method the number of specified ' \ 'segmentations should be identical to the number of atlas ' \ 'image sets.\n\n' raise Exception(err_msg) else: for index in range(len(template_brain_list)): cmd.append( " -g {0} -l {1}".format( template_brain_list[index], template_segmentation_list[index])) # write out the actual command-line entry for testing/validation later command_file = os.path.join(os.getcwd(), 'command.txt') with open(command_file, 'wt') as f: f.write(' '.join(cmd)) str = "" bash_cmd = str.join(cmd) try: retcode = subprocess.check_output(bash_cmd, shell=True) \ # noqa: F841 # pylint: disable=unused-variable except Exception as e: # pylint: disable=broad-except,invalid-name # pylint: disable=raise-missing-from raise Exception('[!] antsJointLabel segmentation method did not ' 'complete successfully.\n\nError ' 'details:\n{0}\n{1}\n'.format( e, getattr(e, 'output', ''))) multiatlas_Intensity = None multiatlas_Labels = None files = [f for f in os.listdir('.') if os.path.isfile(f)] for f in files: if "Intensity" in f: multiatlas_Intensity = os.getcwd() + "/" + f if "Labels" in f: multiatlas_Labels = os.getcwd() + "/" + f if not multiatlas_Labels: raise Exception("\n\n[!] No multiatlas labels file found. " "antsJointLabelFusion may not have completed " "successfully.\n\n") return multiatlas_Intensity, multiatlas_Labels
[docs]def pick_tissue_from_labels_file(multiatlas_Labels, csf_label=[4,14,15,24,43], gm_label=[3,42], wm_label=[2,41]): """Pick tissue mask from multiatlas labels file based off of FreeSurferColorLUT https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/AnatomicalROI/FreeSurferColorLUT or user provided label value Parameters ---------- multiatlas_Labels : string (nifti file) csf_label : list a list of integer label values corresponding to CSF in multiatlas file gm_label : list a list of integer label value corresponding to Gray Matter in multiatlas file wm_label : list a list of integer label value corresponding to White Matter in multiatlas file Returns ------- csf_mask : string (nifti file) gm_mask : string (nifti file) wm_mask : string (nifti file) """ # pylint: disable=import-outside-toplevel,redefined-outer-name,reimported import os import nibabel as nb import numpy as np img = nb.load(multiatlas_Labels) data = img.get_data() # pick tissue mask from multiatlas labels file # based off of FreeSurferColorLUT or user provided label values # hard-coded csf/gm/wm label values are based off of FreeSurferColorLUT # FreeSurfer Ventricle Labels: # Left-Lateral-Ventricle 4, 3rd-Ventricle 14, 4th-Ventricle 15, Right-Lateral-Ventricle 43 csf = np.zeros(np.size(data)) csf[np.where(np.in1d(data, np.array(csf_label)))] = 1 csf = csf.reshape(data.shape) gm = np.zeros(np.size(data)) gm[np.where(np.in1d(data, np.array(gm_label)))] = 1 gm = gm.reshape(data.shape) wm = np.zeros(np.size(data)) wm[np.where(np.in1d(data, np.array(wm_label)))] = 1 wm = wm.reshape(data.shape) save_img_csf = nb.Nifti1Image(csf, header=img.header, affine=img.affine) save_img_gm = nb.Nifti1Image(gm, header=img.header, affine=img.affine) save_img_wm = nb.Nifti1Image(wm, header=img.header, affine=img.affine) save_img_csf.to_filename('csf_mask.nii.gz') save_img_gm.to_filename('gm_mask.nii.gz') save_img_wm.to_filename('wm_mask.nii.gz') csf_mask = os.path.join(os.getcwd(), 'csf_mask.nii.gz') gm_mask = os.path.join(os.getcwd(), 'gm_mask.nii.gz') wm_mask = os.path.join(os.getcwd(), 'wm_mask.nii.gz') return csf_mask, gm_mask, wm_mask