Source code for CPAC.timeseries.timeseries_analysis

import nipype.interfaces.utility as util
from nipype.interfaces import afni, fsl
from nipype.interfaces.utility import Function

from CPAC.connectome.connectivity_matrix import create_connectome_afni, \
                                                create_connectome_nilearn, \
                                                get_connectome_method
from CPAC.pipeline import nipype_pipeline_engine as pe
from CPAC.utils.datasource import create_roi_mask_dataflow, \
                                  create_spatial_map_dataflow, \
                                  resample_func_roi


[docs]def get_voxel_timeseries(wf_name='voxel_timeseries'): """ Workflow to extract time series for each voxel in the data that is present in the input mask Parameters ---------- wf_name : string name of the workflow Returns ------- wflow : workflow object workflow object Notes ----- `Source <https://github.com/FCP-INDI/C-PAC/blob/master/CPAC/timeseries/timeseries_analysis.py>`_ Workflow Inputs:: inputspec.rest : string (nifti file) path to input functional data inputspec.output_type : string (list of boolean) list of boolean for csv and npz file formats input_mask.masks : string (nifti file) path to ROI mask Workflow Outputs:: outputspec.mask_outputs: string (1D, csv and/or npz files) list of time series matrices stored in csv and/or npz files.By default it outputs mean of voxels across each time point in a afni compatible 1D file. High Level Workflow Graph: Example ------- >>> import CPAC.timeseries.timeseries_analysis as t >>> wf = t.get_voxel_timeseries() >>> wf.inputs.inputspec.rest = '/home/data/rest.nii.gz' # doctest: +SKIP >>> wf.inputs.input_mask.mask = '/usr/local/fsl/data/standard/MNI152_T1_2mm_brain.nii.gz' # doctest: +SKIP >>> wf.inputs.inputspec.output_type = [True,True] >>> wf.base_dir = './' >>> wf.run() # doctest: +SKIP """ wflow = pe.Workflow(name=wf_name) inputNode = pe.Node(util.IdentityInterface(fields=['rest', 'output_type']), name='inputspec') inputNode_mask = pe.Node(util.IdentityInterface(fields=['mask']), name='input_mask') outputNode = pe.Node(util.IdentityInterface(fields=['mask_outputs']), name='outputspec') timeseries_voxel = pe.Node(util.Function(input_names=['data_file', 'template'], output_names=['oneD_file'], function=gen_voxel_timeseries), name='timeseries_voxel') wflow.connect(inputNode, 'rest', timeseries_voxel, 'data_file') #wflow.connect(inputNode, 'output_type', # timeseries_voxel, 'output_type') wflow.connect(inputNode_mask, 'mask', timeseries_voxel, 'template') wflow.connect(timeseries_voxel, 'oneD_file', outputNode, 'mask_outputs') return wflow
def clean_roi_csv(roi_csv): """Remove the file path comments from every other row of the output of AFNI's 3dROIstats. 3dROIstats has a -nobriklab and a -quiet option, but neither remove the file path comments while retaining the ROI label header, which is needed. If there are no file path comments to remove, this function simply passes the original file as output, instead of unnecessarily opening and re-writing it. Parameters ---------- roi_csv : str path to CSV Returns ------- roi_array : numpy.ndarray edited_roi_csv: str path to CSV """ import os import pandas as pd import numpy as np with open(roi_csv, 'r') as f: csv_lines = f.readlines() # flag whether to re-write modified = False edited_lines = [] for line in csv_lines: line = line.replace('\t\t\t', '') line = line.replace('\t\t', '') line = line.replace('\t', ',') line = line.replace('#,', '#') if '#' in line: if '/' in line and '.' in line: modified = True continue if 'Sub-brick' in line: modified = True continue edited_lines.append(line) if modified: edited_roi_csv = os.path.join(os.getcwd(), os.path.basename(roi_csv)) with open(edited_roi_csv, 'wt') as f: for line in edited_lines: f.write(line) edited_roi_csv = edited_roi_csv else: edited_roi_csv = roi_csv data = pd.read_csv(edited_roi_csv, sep=',', header=1) data = data.dropna(axis=1) roi_array = np.transpose(data.values) return roi_array, edited_roi_csv def write_roi_npz(roi_csv, out_type=None): roi_npz = None roi_outputs = [roi_csv[0]] if not out_type: return roi_outputs elif out_type[1]: np_roi_data = genfromtxt(roi_csv[0], delimiter=',') roi_npz = os.path.join(os.getcwd(), 'roi_stats.npz') with open(roi_npz, 'wb') as f: np.savez(f, np_roi_data) roi_outputs.append(roi_npz) return roi_outputs
[docs]def get_roi_timeseries(wf_name='roi_timeseries'): """ Workflow to extract timeseries for each node in the ROI mask. For each node, mean across all the timepoint is calculated and stored in csv and npz format. Parameters ---------- wf_name : string name of the workflow Returns ------- wflow : workflow object workflow object Notes ----- `Source <https://github.com/FCP-INDI/C-PAC/blob/master/CPAC/timeseries/timeseries_analysis.py>`_ Workflow Inputs:: inputspec.rest : string (nifti file) path to input functional data inputspec.output_type : string (list of boolean) list of boolean for csv and npz file formats input_roi.roi : string (nifti file) path to ROI mask Workflow Outputs:: outputspec.roi_ts : numpy array Voxel time series stored in numpy array, which is used to create ndmg graphs. outputspec.roi_outputs : string (list of files) Voxel time series stored in 1D (column wise timeseries for each node), csv and/or npz files. By default it outputs timeseries in a 1D file. The 1D file is compatible with afni interfaces. Example ------- >>> import CPAC.timeseries.timeseries_analysis as t >>> wf = t.get_roi_timeseries() >>> wf.inputs.inputspec.rest = '/home/data/rest.nii.gz' # doctest: +SKIP >>> wf.inputs.input_roi.roi = '/usr/local/fsl/data/atlases/HarvardOxford/HarvardOxford-cort-maxprob-thr0-2mm.nii.gz' # doctest: +SKIP >>> wf.inputs.inputspec.output_type = [True,True] # doctest: +SKIP >>> wf.base_dir = './' >>> wf.run() # doctest: +SKIP """ wflow = pe.Workflow(name=wf_name) inputNode = pe.Node(util.IdentityInterface(fields=['rest']), name='inputspec') inputnode_roi = pe.Node(util.IdentityInterface(fields=['roi']), name='input_roi') outputNode = pe.Node(util.IdentityInterface(fields=['roi_ts', 'roi_csv']), name='outputspec') timeseries_roi = pe.Node(interface=afni.ROIStats(), name='3dROIstats', mem_gb=0.4, mem_x=(756789500459879 / 37778931862957161709568, 'in_file')) timeseries_roi.inputs.quiet = False timeseries_roi.inputs.args = "-1Dformat" # TODO: add -mask_f2short for float parcellation mask # if parcellation mask has float values # timeseries_roi.inputs.mask_f2short = True wflow.connect(inputNode, 'rest', timeseries_roi, 'in_file') wflow.connect(inputnode_roi, 'roi', timeseries_roi, 'mask_file') clean_csv_imports = ['import os'] clean_csv = pe.Node(util.Function(input_names=['roi_csv'], output_names=['roi_array', 'edited_roi_csv'], function=clean_roi_csv, imports=clean_csv_imports), name='clean_roi_csv') wflow.connect(timeseries_roi, 'out_file', clean_csv, 'roi_csv') wflow.connect(clean_csv, 'roi_array', outputNode, 'roi_ts') wflow.connect(clean_csv, 'edited_roi_csv', outputNode, 'roi_csv') #write_npz_imports = ['import os', 'import numpy as np', # 'from numpy import genfromtxt'] #write_npz = pe.Node(util.Function(input_names=['roi_csv', 'out_type'], # output_names=['roi_output_npz'], # function=write_roi_npz, # imports=write_npz_imports), # name='write_roi_npz') #wflow.connect(clean_csv, 'edited_roi_csv', write_npz, 'roi_csv') #wflow.connect(inputNode, 'output_type', write_npz, 'out_type') #wflow.connect(write_npz, 'roi_output_npz', outputNode, 'roi_outputs') return wflow
[docs]def get_spatial_map_timeseries(wf_name='spatial_map_timeseries'): """ Workflow to regress each provided spatial map to the subjects functional 4D file in order to return a timeseries for each of the maps Parameters ---------- wf_name : string name of the workflow Returns ------- wflow : workflow object workflow object Notes ----- `Source <https://github.com/FCP-INDI/C-PAC/blob/master/CPAC/timeseries/timeseries_analysis.py>`_ Workflow Inputs:: inputspec.subject_rest : string (nifti file) path to input functional data inputspec.subject_mask : string (nifti file) path to subject functional mask inputspec.spatial_map : string (nifti file) path to Spatial Maps inputspec.demean : Boolean control whether to demean model and data Workflow Outputs:: outputspec.subject_timeseries: string (txt file) list of time series stored in a space separated txt file the columns are spatial maps, rows are timepoints Example ------- >>> import CPAC.timeseries.timeseries_analysis as t >>> wf = t.get_spatial_map_timeseries() >>> wf.inputs.inputspec.subject_rest = '/home/data/rest.nii.gz' # doctest: +SKIP >>> wf.inputs.inputspec.subject_mask = '/home/data/rest_mask.nii.gz' # doctest: +SKIP >>> wf.inputs.inputspec.ICA_map = '/home/data/spatialmaps/spatial_map.nii.gz' # doctest: +SKIP >>> wf.inputs.inputspec.demean = True >>> wf.base_dir = './' >>> wf.run() # doctest: +SKIP """ wflow = pe.Workflow(name=wf_name) inputNode = pe.Node(util.IdentityInterface (fields=['subject_rest', 'subject_mask', 'spatial_map', 'demean']), name='inputspec') outputNode = pe.Node(util.IdentityInterface( fields=['subject_timeseries']), name='outputspec') spatialReg = pe.Node(interface=fsl.GLM(), name='spatial_regression', mem_gb=0.2, mem_x=(1708448960473801 / 302231454903657293676544, 'in_file')) spatialReg.inputs.out_file = 'spatial_map_timeseries.txt' wflow.connect(inputNode, 'subject_rest', spatialReg, 'in_file') wflow.connect(inputNode, 'subject_mask', spatialReg, 'mask') wflow.connect(inputNode, 'spatial_map', spatialReg, 'design') wflow.connect(inputNode, 'demean', spatialReg, 'demean') wflow.connect(spatialReg, 'out_file', outputNode, 'subject_timeseries') return wflow
[docs]def get_vertices_timeseries(wf_name='vertices_timeseries'): """ Workflow to get vertices time series from a FreeSurfer surface file Parameters ---------- wf_name : string name of the workflow Returns ------- wflow : workflow object workflow object Notes ----- `Source <https://github.com/FCP-INDI/C-PAC/blob/master/CPAC/timeseries/timeseries_analysis.py>`_ Workflow Inputs:: inputspec.lh_surface_file : string (nifti file) left hemishpere surface file inputspec.rh_surface_file : string (nifti file) right hemisphere surface file Workflow Outputs:: outputspec.surface_outputs: string (csv and/or npz files) list of timeseries matrices stored in csv and/or npz files Example ------- >>> import CPAC.timeseries.timeseries_analysis as t >>> wf = t.get_vertices_timeseries() >>> wf.inputs.inputspec.lh_surface_file = '/home/data/outputs/SurfaceRegistration/lh_surface_file.nii.gz' # doctest: +SKIP >>> wf.inputs.inputspec.rh_surface_file = '/home/data/outputs/SurfaceRegistration/rh_surface_file.nii.gz' # doctest: +SKIP >>> wf.base_dir = './' >>> wf.run() # doctest: +SKIP """ wflow = pe.Workflow(name=wf_name) inputNode = pe.Node(util.IdentityInterface(fields=['lh_surface_file', 'rh_surface_file']), name='inputspec') timeseries_surface = pe.Node(util.Function(input_names=['rh_surface_file', 'lh_surface_file'], output_names=['out_file'], function=gen_vertices_timeseries), name='timeseries_surface') outputNode = pe.Node(util.IdentityInterface(fields=['surface_outputs']), name='outputspec') wflow.connect(inputNode, 'rh_surface_file', timeseries_surface, 'rh_surface_file') wflow.connect(inputNode, 'lh_surface_file', timeseries_surface, 'lh_surface_file') wflow.connect(timeseries_surface, 'out_file', outputNode, 'surface_outputs') return wflow
def get_normalized_moments(wf_name='normalized_moments'): """ Workflow to calculate the normalized moments for skewedness calculations Parameters ---------- wf_name : string name of the workflow Returns ------- wflow : workflow object workflow object Notes ----- `Source <https://github.com/FCP-INDI/C-PAC/blob/master/CPAC/timeseries/timeseries_analysis.py>`_ Workflow Inputs:: inputspec.spatial_timeseries : string (nifti file) spatial map timeseries Workflow Outputs:: outputspec.moments: list list of moment values Example ------- >>> import CPAC.timeseries.timeseries_analysis as t >>> wf = t.get_normalized_moments() # doctest: +SKIP >>> wf.inputs.inputspec.spatial_timeseries = '/home/data/outputs/SurfaceRegistration/lh_surface_file.nii.gz' # doctest: +SKIP >>> wf.base_dir = './' # doctest: +SKIP >>> wf.run() # doctest: +SKIP """ wflow = pe.Workflow(name=wf_name) inputNode = pe.Node(util.IdentityInterface(fields=['spatial_timeseries']), name='inputspec') # calculate normalized moments # output of this node is a list, 'moments' norm_moments = pe.Node(util.CalculateNormalizedMoments(moment='3'), name='norm_moments') outputNode = pe.Node(util.IdentityInterface(fields=['moments_outputs']), name='outputspec') wflow.connect(inputNode, 'spatial_timeseries', norm_moments, 'timeseries_file') wflow.connect(norm_moments, 'moments', outputNode, 'moments_outputs') return wflow
[docs]def gen_roi_timeseries(data_file, template, output_type): """ Method to extract mean of voxel across all timepoints for each node in roi mask Parameters ---------- data_file : string path to input functional data template : string path to input roi mask in functional native space output_type : list list of two boolean values suggesting the output types - numpy npz file and csv format Returns ------- out_list : list list of 1D file, txt file, csv file and/or npz file containing mean timeseries for each scan corresponding to each node in roi mask Raises ------ Exception """ import nibabel as nib import csv import numpy as np import os import shutil unit_data = nib.load(template).get_data() # Cast as rounded-up integer unit_data = np.int64(np.ceil(unit_data)) datafile = nib.load(data_file) img_data = datafile.get_data() vol = img_data.shape[3] if unit_data.shape != img_data.shape[:3]: raise Exception('\n\n[!] CPAC says: Invalid Shape Error.' 'Please check the voxel dimensions. ' 'Data and roi should have the same shape.\n\n') nodes = np.unique(unit_data).tolist() sorted_list = [] node_dict = {} out_list = [] # extracting filename from input template tmp_file = os.path.splitext( os.path.basename(template))[0] tmp_file = os.path.splitext(tmp_file)[0] oneD_file = os.path.abspath('roi_' + tmp_file + '.1D') txt_file = os.path.abspath('roi_' + tmp_file + '.txt') csv_file = os.path.abspath('roi_' + tmp_file + '.csv') numpy_file = os.path.abspath('roi_' + tmp_file + '.npz') nodes.sort() for n in nodes: if n > 0: node_array = img_data[unit_data == n] node_str = 'node_{0}'.format(n) avg = np.mean(node_array, axis=0) avg = np.round(avg, 6) list1 = [n] + avg.tolist() sorted_list.append(list1) node_dict[node_str] = avg.tolist() # writing to 1Dfile print("writing 1D file..") f = open(oneD_file, 'w') writer = csv.writer(f, delimiter=',') value_list = [] new_keys = sorted([ int(float(key.split('node_')[1])) for key in node_dict ]) roi_number_list = [str(n) for n in new_keys] roi_number_str = [] for number in roi_number_list: roi_number_str.append("#" + number) for key in new_keys: value_list.append(str('{0}\n'.format(node_dict['node_{0}'.format(key)]))) column_list = list(zip(*value_list)) writer.writerow(roi_number_str) for column in column_list: writer.writerow(list(column)) f.close() out_list.append(oneD_file) # copy the 1D contents to txt file shutil.copy(oneD_file, txt_file) out_list.append(txt_file) # if csv is required ''' if output_type[0]: print("writing csv file..") f = open(csv_file, 'wt') writer = csv.writer(f, delimiter=',', quoting=csv.QUOTE_MINIMAL) headers = ['node/volume'] + np.arange(vol).tolist() writer.writerow(headers) writer.writerows(sorted_list) f.close() out_list.append(csv_file) # if npz file is required if output_type[1]: print("writing npz file..") np.savez(numpy_file, roi_data=value_list, roi_numbers=roi_number_list) out_list.append(numpy_file) return out_list ''' return oneD_file
[docs]def gen_voxel_timeseries(data_file, template): """ Method to extract timeseries for each voxel in the data that is present in the input mask Parameters ---------- datafile : string (nifti file) path to input functional data template : string (nifti file) path to input mask in functional native space output_type : list list of two boolean values suggesting the output types - numpy npz file and csv format Returns ------- out_list : list of files Based on ouput_type options method returns a list containing path to npz and csv file having timeseries of each voxel in the data that is present in the input mask.The row header corresponds to voxel's xyz cordinates and column headers corresponds to the volume index in the csv. By default it outputs afni compatible 1D file with mean of timeseries of voxels across timepoints. Raises ------ Exception """ import nibabel as nib import numpy as np import csv import os unit = nib.load(template) unit_data = unit.get_data() datafile = nib.load(data_file) img_data = datafile.get_data() header_data = datafile.get_header() qform = header_data.get_qform() sorted_list = [] vol_dict = {} out_list = [] tmp_file = os.path.splitext( os.path.basename(template))[0] tmp_file = os.path.splitext(tmp_file)[0] oneD_file = os.path.abspath('mask_' + tmp_file + '.1D') f = open(oneD_file, 'wt') x, y, z = unit_data.shape node_array = img_data[unit_data != 0] node_array = node_array.T time_points = node_array.shape[0] for t in range(0, time_points): string = 'vol {0}'.format(t) vol_dict[string] = node_array[t] f.write(str(np.round(np.mean(node_array[t]), 6))) f.write('\n') val = node_array[t].tolist() val.insert(0, t) sorted_list.append(val) f.close() csv_file = os.path.abspath('mask_' + tmp_file + '.csv') f = open(csv_file, 'wt') writer = csv.writer(f, delimiter=str(','), quoting=csv.QUOTE_MINIMAL) one = np.array([1]) headers = ['volume/xyz'] cordinates = np.argwhere(unit_data != 0) for val in range(np.alen(cordinates)): ijk_mat = np.concatenate([cordinates[val], one]) ijk_mat = ijk_mat.T product = np.dot(qform, ijk_mat) val = tuple(product.tolist()[0:3]) headers.append(val) writer.writerow(headers) writer.writerows(sorted_list) f.close() #if output_type[1]: # numpy_file = os.path.abspath('mask_' + tmp_file + '.npz') # np.savez(numpy_file, **dict(vol_dict)) # out_list.append(numpy_file) return oneD_file
[docs]def gen_vertices_timeseries(rh_surface_file, lh_surface_file): """ Method to extract timeseries from vertices of a freesurfer surface file Parameters ---------- rh_surface_file : string (mgz/mgh file) left hemisphere FreeSurfer surface file lh_surface_file : string (mgz/mgh file) right hemisphere FreeSurfer surface file Returns ------- out_list : string (list of file) list of vertices timeseries csv files """ import gradunwarp import numpy as np import os out_list = [] rh_file = os.path.splitext( os.path.basename(rh_surface_file))[0] + '_rh.csv' mghobj1 = gradunwarp.mgh.MGH() mghobj1.load(rh_surface_file) vol = mghobj1.vol (x, y) = vol.shape # print "rh shape", x, y np.savetxt(rh_file, vol, delimiter='\t') out_list.append(rh_file) lh_file = os.path.splitext(os.path.basename(lh_surface_file))[0] + '_lh.csv' mghobj2 = gradunwarp.mgh.MGH() mghobj2.load(lh_surface_file) vol = mghobj2.vol (x, y) = vol.shape # print "lh shape", x, y np.savetxt(lh_file, vol, delimiter=',') out_list.append(lh_file) return out_list
def timeseries_extraction_AVG(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "timeseries_extraction_AVG", "config": ["timeseries_extraction"], "switch": ["run"], "option_key": "None", "option_val": "None", "inputs": [["space-template_desc-cleaned_bold", "space-template_desc-brain_bold", "space-template_desc-motion_bold", "space-template_desc-preproc_bold", "space-template_bold"]], "outputs": ["desc-Mean_timeseries", "desc-ndmg_correlations", "atlas_name", "desc-PearsonAfni_correlations", "desc-PartialAfni_correlations", "desc-PearsonNilearn_correlations", "desc-PartialNilearn_correlations"]} ''' resample_functional_roi = pe.Node(Function(input_names=['in_func', 'in_roi', 'realignment', 'identity_matrix'], output_names=['out_func', 'out_roi'], function=resample_func_roi, as_module=True), name=f'resample_functional_roi_' f'{pipe_num}') resample_functional_roi.inputs.realignment = cfg.timeseries_extraction[ 'realignment'] resample_functional_roi.inputs.identity_matrix = \ cfg.registration_workflows['functional_registration'][ 'func_registration_to_template']['FNIRT_pipelines']['identity_matrix'] roi_dataflow = create_roi_mask_dataflow( cfg.timeseries_extraction['tse_atlases']['Avg'], f'roi_dataflow_{pipe_num}') roi_dataflow.inputs.inputspec.set( creds_path=cfg.pipeline_setup['input_creds_path'], dl_dir=cfg.pipeline_setup['working_directory']['path'] ) roi_timeseries = get_roi_timeseries(f'roi_timeseries_{pipe_num}') #roi_timeseries.inputs.inputspec.output_type = cfg.timeseries_extraction[ # 'roi_tse_outputs'] node, out = strat_pool.get_data(["space-template_desc-cleaned_bold", "space-template_desc-brain_bold", "space-template_desc-motion_bold", "space-template_desc-preproc_bold", "space-template_bold"]) wf.connect(node, out, resample_functional_roi, 'in_func') wf.connect(roi_dataflow, 'outputspec.out_file', resample_functional_roi, 'in_roi') # connect it to the roi_timeseries # workflow.connect(roi_dataflow, 'outputspec.out_file', # roi_timeseries, 'input_roi.roi') wf.connect(resample_functional_roi, 'out_roi', roi_timeseries, 'input_roi.roi') wf.connect(resample_functional_roi, 'out_func', roi_timeseries, 'inputspec.rest') # create the graphs: # - connectivity matrix matrix_outputs = {} for cm_measure in cfg['timeseries_extraction', 'connectivity_matrix', 'measure']: for cm_tool in cfg['timeseries_extraction', 'connectivity_matrix', 'using']: implementation = get_connectome_method(cm_measure, cm_tool) if implementation is NotImplemented: continue if cm_tool == 'Nilearn': timeseries_correlation = create_connectome_nilearn( name=f'connectomeNilearn{cm_measure}_{pipe_num}' ) elif cm_tool == "AFNI": timeseries_correlation = create_connectome_afni( name=f'connectomeAfni{cm_measure}_{pipe_num}', method=cm_measure, pipe_num=pipe_num ) brain_mask_node, brain_mask_out = strat_pool.get_data([ 'space-template_desc-brain_bold']) wf.connect(brain_mask_node, brain_mask_out, timeseries_correlation, 'inputspec.mask') timeseries_correlation.inputs.inputspec.method = cm_measure wf.connect([ (roi_dataflow, timeseries_correlation, [ ('outputspec.out_name', 'inputspec.atlas_name')]), (resample_functional_roi, timeseries_correlation, [ ('out_roi', 'inputspec.in_rois'), ('out_func', 'inputspec.in_file')])]) output_desc = ''.join(term.lower().capitalize() for term in [ cm_measure, cm_tool]) matrix_outputs[f'desc-{output_desc}_correlations'] = ( timeseries_correlation, 'outputspec.out_file') # - NDMG from CPAC.utils.ndmg_utils import ndmg_create_graphs ndmg_graph_imports = ['import os', 'from CPAC.utils.ndmg_utils import graph'] ndmg_graph = pe.Node(Function( input_names=['ts', 'labels'], output_names=['out_file'], function=ndmg_create_graphs, imports=ndmg_graph_imports, as_module=True ), name=f'ndmg_graphs_{pipe_num}', mem_gb=0.664, mem_x=(1928411764134803 / 302231454903657293676544, 'ts')) wf.connect(roi_timeseries, 'outputspec.roi_ts', ndmg_graph, 'ts') wf.connect(roi_dataflow, 'outputspec.out_file', ndmg_graph, 'labels') outputs = { 'desc-Mean_timeseries': (roi_timeseries, 'outputspec.roi_csv'), 'desc-ndmg_correlations': (ndmg_graph, 'out_file'), 'atlas_name': (roi_dataflow, 'outputspec.out_name'), **matrix_outputs } return (wf, outputs) def timeseries_extraction_Voxel(wf, cfg, strat_pool, pipe_num, opt=None): ''' {"name": "timeseries_extraction_Voxel", "config": ["timeseries_extraction"], "switch": ["run"], "option_key": "None", "option_val": "None", "inputs": [["space-template_desc-cleaned_bold", "space-template_desc-brain_bold", "space-template_desc-motion_bold", "space-template_desc-preproc_bold", "space-template_bold"]], "outputs": ["desc-Voxel_timeseries", "atlas_name"]} ''' resample_functional_to_mask = pe.Node(Function(input_names=['in_func', 'in_roi', 'realignment', 'identity_matrix'], output_names=['out_func', 'out_roi'], function=resample_func_roi, as_module=True), name=f'resample_functional_to_mask_' f'{pipe_num}') resample_functional_to_mask.inputs.realignment = cfg.timeseries_extraction[ 'realignment'] resample_functional_to_mask.inputs.identity_matrix = \ cfg.registration_workflows['functional_registration'][ 'func_registration_to_template']['FNIRT_pipelines']['identity_matrix'] mask_dataflow = create_roi_mask_dataflow(cfg.timeseries_extraction[ 'tse_atlases']['Voxel'], f'mask_dataflow_{pipe_num}') voxel_timeseries = get_voxel_timeseries( f'voxel_timeseries_{pipe_num}') #voxel_timeseries.inputs.inputspec.output_type = cfg.timeseries_extraction[ # 'roi_tse_outputs'] node, out = strat_pool.get_data(["space-template_desc-cleaned_bold", "space-template_desc-brain_bold", "space-template_desc-motion_bold", "space-template_desc-preproc_bold", "space-template_bold"]) # resample the input functional file to mask wf.connect(node, out, resample_functional_to_mask, 'in_func') wf.connect(mask_dataflow, 'outputspec.out_file', resample_functional_to_mask, 'in_roi') # connect it to the voxel_timeseries wf.connect(resample_functional_to_mask, 'out_roi', voxel_timeseries, 'input_mask.mask') wf.connect(resample_functional_to_mask, 'out_func', voxel_timeseries, 'inputspec.rest') outputs = { 'desc-Voxel_timeseries': (voxel_timeseries, 'outputspec.mask_outputs'), 'atlas_name': (mask_dataflow, 'outputspec.out_name') } return (wf, outputs) def spatial_regression(wf, cfg, strat_pool, pipe_num, opt=None): '''Performs spatial regression, extracting the spatial map timeseries of the given atlases. Note: this is a standalone function for when only spatial regression is selected for the given atlases - if dual regression is selected, that spatial regression is performed in the dual_regression function Node Block: {"name": "spatial_regression", "config": ["timeseries_extraction"], "switch": ["run"], "option_key": "None", "option_val": "None", "inputs": [["space-template_desc-cleaned_bold", "space-template_desc-brain_bold", "space-template_desc-motion_bold", "space-template_desc-preproc_bold", "space-template_bold"], "space-template_desc-bold_mask"], "outputs": ["desc-SpatReg_timeseries", "atlas_name"]} ''' resample_spatial_map_to_native_space = pe.Node( interface=fsl.FLIRT(), name=f'resample_spatial_map_to_native_space_{pipe_num}', mem_gb=3.4, mem_x=(5381614225492473 / 1208925819614629174706176, 'in_file')) resample_spatial_map_to_native_space.inputs.set( interp='nearestneighbour', apply_xfm=True, in_matrix_file=cfg.registration_workflows['functional_registration'][ 'func_registration_to_template']['FNIRT_pipelines'][ 'identity_matrix']) spatial_map_dataflow = create_spatial_map_dataflow( cfg.timeseries_extraction['tse_atlases']['SpatialReg'], f'spatial_map_dataflow_{pipe_num}') spatial_map_dataflow.inputs.inputspec.set( creds_path=cfg.pipeline_setup['input_creds_path'], dl_dir=cfg.pipeline_setup['working_directory']['path']) spatial_map_timeseries = get_spatial_map_timeseries( f'spatial_map_timeseries_{pipe_num}') spatial_map_timeseries.inputs.inputspec.demean = True node, out = strat_pool.get_data(["space-template_desc-cleaned_bold", "space-template_desc-brain_bold", "space-template_desc-motion_bold", "space-template_desc-preproc_bold", "space-template_bold"]) # resample the input functional file and functional mask # to spatial map wf.connect(node, out, resample_spatial_map_to_native_space, 'reference') wf.connect(spatial_map_dataflow, 'select_spatial_map.out_file', resample_spatial_map_to_native_space, 'in_file') wf.connect(node, out, spatial_map_timeseries, 'inputspec.subject_rest') # connect it to the spatial_map_timeseries wf.connect(resample_spatial_map_to_native_space, 'out_file', spatial_map_timeseries, 'inputspec.spatial_map') node, out = strat_pool.get_data('space-template_desc-bold_mask') wf.connect(node, out, spatial_map_timeseries, 'inputspec.subject_mask') # 'atlas_name' will be an iterable and will carry through outputs = { 'desc-SpatReg_timeseries': (spatial_map_timeseries, 'outputspec.subject_timeseries'), 'atlas_name': (spatial_map_dataflow, 'select_spatial_map.out_name') } return (wf, outputs)