Source code for CPAC.utils.monitoring.draw_gantt_chart

'''Module to draw an html gantt chart from logfile produced by
``CPAC.utils.monitoring.log_nodes_cb()``.

See https://nipype.readthedocs.io/en/latest/api/generated/nipype.utils.draw_gantt_chart.html
'''  # noqa: E501
import datetime
import random

from collections import OrderedDict
from warnings import warn

from nipype.utils.draw_gantt_chart import draw_lines, draw_resource_bar, \
                                          log_to_dict


[docs]def create_event_dict(start_time, nodes_list): """ Function to generate a dictionary of event (start/finish) nodes from the nodes list Parameters ---------- start_time : datetime.datetime a datetime object of the pipeline start time nodes_list : list a list of the node dictionaries that were run in the pipeline Returns ------- events : dictionary a dictionary where the key is the timedelta from the start of the pipeline execution to the value node it accompanies """ # Import packages import copy events = {} for node in nodes_list: # Format node fields estimated_threads = node.get("num_threads", 1) estimated_memory_gb = node.get("estimated_memory_gb", 1.0) runtime_threads = node.get("runtime_threads", 0) runtime_memory_gb = node.get("runtime_memory_gb", 0.0) # Init and format event-based nodes node["estimated_threads"] = estimated_threads node["estimated_memory_gb"] = estimated_memory_gb node["runtime_threads"] = runtime_threads node["runtime_memory_gb"] = runtime_memory_gb start_node = node finish_node = copy.deepcopy(node) start_node["event"] = "start" finish_node["event"] = "finish" # Get dictionary key start_delta = (node["start"] - start_time).total_seconds() finish_delta = (node["finish"] - start_time).total_seconds() # Populate dictionary if events.get(start_delta): err_msg = "Event logged twice or events started at exact same " \ "time!" warn(str(KeyError(err_msg)), category=Warning) events[start_delta] = start_node events[finish_delta] = finish_node # Return events dictionary return events
[docs]def calculate_resource_timeseries(events, resource): """ Given as event dictionary, calculate the resources used as a timeseries Parameters ---------- events : dictionary a dictionary of event-based node dictionaries of the workflow execution statistics resource : string the resource of interest to return the time-series of; e.g. 'runtime_memory_gb', 'estimated_threads', etc Returns ------- time_series : pandas Series a pandas Series object that contains timestamps as the indices and the resource amount as values """ # Import packages import pandas as pd # Init variables res = OrderedDict() all_res = 0.0 # Iterate through the events for _, event in sorted(events.items()): if event["event"] == "start": if resource in event: try: all_res += float(event[resource]) except ValueError: next current_time = event["start"] elif event["event"] == "finish": if resource in event: try: all_res -= float(event[resource]) except ValueError: next current_time = event["finish"] res[current_time] = all_res # Formulate the pandas timeseries time_series = pd.Series(data=list(res.values()), index=list(res.keys())) # Downsample where there is only value-diff ts_diff = time_series.diff() time_series = time_series[ts_diff != 0] # Return the new time series return time_series
[docs]def draw_nodes(start, nodes_list, cores, minute_scale, space_between_minutes, colors): """ Function to return the html-string of the node drawings for the gantt chart Parameters ---------- start : datetime.datetime obj start time for first node nodes_list : list a list of the node dictionaries cores : integer the number of cores given to the workflow via the 'n_procs' plugin arg total_duration : float total duration of the workflow execution (in seconds) minute_scale : integer the scale, in minutes, at which to plot line markers for the gantt chart; for example, minute_scale=10 means there are lines drawn at every 10 minute interval from start to finish space_between_minutes : integer scale factor in pixel spacing between minute line markers colors : list a list of colors to choose from when coloring the nodes in the gantt chart Returns ------- result : string the html-formatted string for producing the minutes-based time line markers """ # Init variables result = "" scale = space_between_minutes / minute_scale space_between_minutes = space_between_minutes / scale end_times = [ datetime.datetime( start.year, start.month, start.day, start.hour, start.minute, start.second ) for core in range(cores) ] # For each node in the pipeline for node in nodes_list: # Get start and finish times node_start = node["start"] node_finish = node["finish"] # Calculate an offset and scale duration offset = ( (node_start - start).total_seconds() / 60 ) * scale * space_between_minutes + 220 # Scale duration scale_duration = (node["duration"] / 60) * scale \ * space_between_minutes if scale_duration < 5: scale_duration = 5 scale_duration -= 2 # Left left = 60 for core in range(len(end_times)): if end_times[core] < node_start: left += core * 30 end_times[core] = datetime.datetime( node_finish.year, node_finish.month, node_finish.day, node_finish.hour, node_finish.minute, node_finish.second, ) break # Get color for node object color = random.choice(colors) if "error" in node: color = "red" # Setup dictionary for node html string insertion node_dict = { "left": left, "offset": offset, "scale_duration": scale_duration, "color": color, "node_name": node.get("name", node.get("id", "")), "node_dur": node["duration"] / 60.0, "node_start": node_start.strftime("%Y-%m-%d %H:%M:%S"), "node_finish": node_finish.strftime("%Y-%m-%d %H:%M:%S"), } # Create new node string new_node = ( "<div class='node' style='left:%(left)spx;top:%(offset)spx;" "height:%(scale_duration)spx;background-color:%(color)s;'" "title='%(node_name)s\nduration:%(node_dur)s\n" "start:%(node_start)s\nend:%(node_finish)s'></div>" % node_dict ) # Append to output result result += new_node # Return html string for nodes return result
[docs]def generate_gantt_chart( logfile, cores, minute_scale=10, space_between_minutes=50, colors=["#7070FF", "#4E4EB2", "#2D2D66", "#9B9BFF"], ): """ Generates a gantt chart in html showing the workflow execution based on a callback log file. This script was intended to be used with the MultiprocPlugin. The following code shows how to set up the workflow in order to generate the log file: Parameters ---------- logfile : string filepath to the callback log file to plot the gantt chart of cores : integer the number of cores given to the workflow via the 'n_procs' plugin arg minute_scale : integer (optional); default=10 the scale, in minutes, at which to plot line markers for the gantt chart; for example, minute_scale=10 means there are lines drawn at every 10 minute interval from start to finish space_between_minutes : integer (optional); default=50 scale factor in pixel spacing between minute line markers colors : list (optional) a list of colors to choose from when coloring the nodes in the gantt chart Returns ------- None the function does not return any value but writes out an html file in the same directory as the callback log path passed in Usage ----- # import logging # import logging.handlers # from nipype.utils.profiler import log_nodes_cb # log_filename = 'callback.log' # logger = logging.getLogger('callback') # logger.setLevel(logging.DEBUG) # handler = logging.FileHandler(log_filename) # logger.addHandler(handler) # #create workflow # workflow = ... # workflow.run(plugin='MultiProc', # plugin_args={'n_procs':8, 'memory':12, 'status_callback': log_nodes_cb}) # generate_gantt_chart('callback.log', 8) """ # noqa: E501 # add the html header html_string = """<!DOCTYPE html> <head> <style> #content{ width:99%; height:100%; position:absolute; } .node{ background-color:#7070FF; border-radius: 5px; position:absolute; width:20px; white-space:pre-wrap; } .line{ position: absolute; color: #C2C2C2; opacity: 0.5; margin: 0px; } .time{ position: absolute; font-size: 16px; color: #666666; margin: 0px; } .bar{ position: absolute; height: 1px; opacity: 0.7; } .dot{ position: absolute; width: 1px; height: 1px; background-color: red; } .label { width:20px; height:20px; opacity: 0.7; display: inline-block; } </style> </head> <body> <div id="content"> <div style="display:inline-block;"> """ # noqa: E501 close_header = """ </div> <div style="display:inline-block;margin-left:60px;vertical-align: top;"> <p><span><div class="label" style="background-color:#90BBD7;"></div> Estimated Resource</span></p> <p><span><div class="label" style="background-color:#03969D;"></div> Actual Resource</span></p> <p><span><div class="label" style="background-color:#f00;"></div> Failed Node</span></p> </div> """ # noqa: E501 # Read in json-log to get list of node dicts nodes_list = log_to_dict(logfile) # Only include nodes with timing information, and covert timestamps # from strings to datetimes nodes_list = [ { k: datetime.datetime.strptime(i[k], "%Y-%m-%dT%H:%M:%S.%f") if k in {"start", "finish"} else i[k] for k in i } for i in nodes_list if "start" in i and "finish" in i ] for node in nodes_list: if "duration" not in node: node["duration"] = (node["finish"] - node["start"]).total_seconds() # Create the header of the report with useful information start_node = nodes_list[0] last_node = nodes_list[-1] duration = (last_node["finish"] - start_node["start"]).total_seconds() # Get events based dictionary of node run stats events = create_event_dict(start_node["start"], nodes_list) # Summary strings of workflow at top html_string += ( "<p>Start: " + start_node["start"].strftime("%Y-%m-%d %H:%M:%S") + "</p>" ) html_string += ( "<p>Finish: " + last_node["finish"].strftime("%Y-%m-%d %H:%M:%S") + "</p>" ) html_string += "<p>Duration: " + "{0:.2f}".format(duration / 60) \ + " minutes</p>" html_string += "<p>Nodes: " + str(len(nodes_list)) + "</p>" html_string += "<p>Cores: " + str(cores) + "</p>" html_string += close_header # Draw nipype nodes Gantt chart and runtimes html_string += draw_lines( start_node["start"], duration, minute_scale, space_between_minutes ) html_string += draw_nodes( start_node["start"], nodes_list, cores, minute_scale, space_between_minutes, colors, ) # Get memory timeseries estimated_mem_ts = calculate_resource_timeseries( events, "estimated_memory_gb") runtime_mem_ts = calculate_resource_timeseries(events, "runtime_memory_gb") # Plot gantt chart resource_offset = 120 + 30 * cores html_string += draw_resource_bar( start_node["start"], last_node["finish"], estimated_mem_ts, space_between_minutes, minute_scale, "#90BBD7", resource_offset * 2 + 120, "Memory", ) html_string += draw_resource_bar( start_node["start"], last_node["finish"], runtime_mem_ts, space_between_minutes, minute_scale, "#03969D", resource_offset * 2 + 120, "Memory", ) # Get threads timeseries estimated_threads_ts = calculate_resource_timeseries( events, "estimated_threads") runtime_threads_ts = calculate_resource_timeseries( events, "runtime_threads") # Plot gantt chart html_string += draw_resource_bar( start_node["start"], last_node["finish"], estimated_threads_ts, space_between_minutes, minute_scale, "#90BBD7", resource_offset, "Threads", ) html_string += draw_resource_bar( start_node["start"], last_node["finish"], runtime_threads_ts, space_between_minutes, minute_scale, "#03969D", resource_offset, "Threads", ) # finish html html_string += """ </div> </body>""" # save file with open(logfile + ".html", "w") as html_file: html_file.write(html_string)
[docs]def resource_overusage_report(cblog): '''Function to parse through a callback log for memory and/or thread usage above estimates / limits. Parameters ---------- cblog: str path to callback.log Returns ------- text_report: str excessive: dict ''' cb_dict_list = log_to_dict(cblog) excessive = {node['id']: [ node['runtime_memory_gb']if node.get('runtime_memory_gb', 0) > node.get('estimated_memory_gb', 1) else None, node['estimated_memory_gb'] if node.get('runtime_memory_gb', 0) > node.get('estimated_memory_gb', 1) else None, node['runtime_threads'] - 1 if node.get('runtime_threads', 0) - 1 > node.get('num_threads', 1) else None, node['num_threads'] if node.get('runtime_threads', 0) - 1 > node.get('num_threads', 1) else None ] for node in [node for node in cb_dict_list if ( node.get('runtime_memory_gb', 0) > node.get('estimated_memory_gb', 1) # or node.get('runtime_threads', 0) - 1 > node.get('num_threads', 1) )]} text_report = '' if excessive: text_report += 'The following nodes used excessive resources:\n' dotted_line = '-' * (len(text_report) - 1) + '\n' text_report += dotted_line for node in excessive: node_id = '\n .'.join(node.split('.')) text_report += f'\n{node_id}\n' if excessive[node][0]: text_report += ' **memory_gb**\n' \ ' runtime > estimated\n' \ f' {excessive[node][0]} ' \ f'> {excessive[node][1]}\n' # JC: I'm not convinced 'runtime_threads' and 'threads' are # comparable in nipype ~1.5.1 # if excessive[node][2]: # text_report += ' **threads**\n runtime > limit\n' \ # f' {excessive[node][2]} ' \ # f'> {excessive[node][3]}\n' text_report += dotted_line return text_report, excessive
[docs]def resource_report(callback_log, num_cores, logger=None): '''Function to attempt to warn any excessive resource usage and generate an interactive HTML chart. Parameters ---------- callback_log: str path to callback.log num_cores: int logger: Logger https://docs.python.org/3/library/logging.html#logger-objects Returns ------- None ''' e_msg = '' try: txt_report = resource_overusage_report(callback_log)[0] if txt_report: if logger is not None: logger.warning(txt_report) else: warn(txt_report, category=ResourceWarning) open( callback_log + ".resource_overusage.txt", "w" ).write(txt_report) except Exception: e_msg += f'Excessive usage report failed for {callback_log}\n' try: generate_gantt_chart(callback_log, num_cores) except Exception: e_msg += f'Report generation failed for {callback_log}' if e_msg: if logger is not None: logger.warning(e_msg, exc_info=1) else: warn(e_msg, category=ResourceWarning)