# -*- coding: utf-8 -*-
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""Defines functionality for pipelined execution of interfaces
The `Node` class provides core functionality for batch processing.
"""
from collections import OrderedDict, defaultdict
import os
import os.path as op
import shutil
import socket
from copy import deepcopy
from glob import glob
from logging import INFO
from tempfile import mkdtemp
from ... import config, logging
from ...utils.misc import flatten, unflatten, str2bool, dict_diff
from ...utils.filemanip import (
md5,
ensure_list,
simplify_list,
copyfiles,
fnames_presuffix,
loadpkl,
split_filename,
load_json,
emptydirs,
savepkl,
indirectory,
silentrm,
)
from ...interfaces.base import (
traits,
InputMultiPath,
CommandLine,
Undefined,
DynamicTraitedSpec,
Bunch,
InterfaceResult,
Interface,
isdefined,
)
from ...interfaces.base.specs import get_filecopy_info
from .utils import (
_parameterization_dir,
save_hashfile as _save_hashfile,
load_resultfile as _load_resultfile,
save_resultfile as _save_resultfile,
nodelist_runner as _node_runner,
strip_temp as _strip_temp,
write_node_report,
clean_working_directory,
merge_dict,
evaluate_connect_function,
)
from .base import EngineBase
logger = logging.getLogger("nipype.workflow")
class Node(EngineBase):
"""
Wraps interface objects for use in pipeline
A Node creates a sandbox-like directory for executing the underlying
interface. It will copy or link inputs into this directory to ensure that
input data are not overwritten. A hash of the input state is used to
determine if the Node inputs have changed and whether the node needs to be
re-executed.
Examples
--------
>>> from nipype import Node
>>> from nipype.interfaces import spm
>>> realign = Node(spm.Realign(), 'realign')
>>> realign.inputs.in_files = 'functional.nii'
>>> realign.inputs.register_to_mean = True
>>> realign.run() # doctest: +SKIP
"""
def __init__(
self,
interface,
name,
iterables=None,
itersource=None,
synchronize=False,
overwrite=None,
needed_outputs=None,
run_without_submitting=False,
n_procs=None,
mem_gb=0.20,
**kwargs
):
"""
Parameters
----------
interface : interface object
node specific interface (fsl.Bet(), spm.Coregister())
name : alphanumeric string
node specific name
iterables : generator
Input field and list to iterate using the pipeline engine
for example to iterate over different frac values in fsl.Bet()
for a single field the input can be a tuple, otherwise a list
of tuples ::
node.iterables = ('frac',[0.5,0.6,0.7])
node.iterables = [('fwhm',[2,4]),('fieldx',[0.5,0.6,0.7])]
If this node has an itersource, then the iterables values
is a dictionary which maps an iterable source field value
to the target iterables field values, e.g.: ::
inputspec.iterables = ('images',['img1.nii', 'img2.nii']])
node.itersource = ('inputspec', ['frac'])
node.iterables = ('frac', {'img1.nii': [0.5, 0.6],
'img2.nii': [0.6, 0.7]})
If this node's synchronize flag is set, then an alternate
form of the iterables is a [fields, values] list, where
fields is the list of iterated fields and values is the
list of value tuples for the given fields, e.g.: ::
node.synchronize = True
node.iterables = [('frac', 'threshold'),
[(0.5, True),
(0.6, False)]]
itersource: tuple
The (name, fields) iterables source which specifies the name
of the predecessor iterable node and the input fields to use
from that source node. The output field values comprise the
key to the iterables parameter value mapping dictionary.
synchronize: boolean
Flag indicating whether iterables are synchronized.
If the iterables are synchronized, then this iterable
node is expanded once per iteration over all of the
iterables values.
Otherwise, this iterable node is expanded once per
each permutation of the iterables values.
overwrite : Boolean
Whether to overwrite contents of output directory if it already
exists. If directory exists and hash matches it
assumes that process has been executed
needed_outputs : list of output_names
Force the node to keep only specific outputs. By default all
outputs are kept. Setting this attribute will delete any output
files and directories from the node's working directory that are
not part of the `needed_outputs`.
run_without_submitting : boolean
Run the node without submitting to a job engine or to a
multiprocessing pool
"""
# Make sure an interface is set, and that it is an Interface
if interface is None:
raise IOError("Interface must be provided")
if not isinstance(interface, Interface):
raise IOError("interface must be an instance of an Interface")
super(Node, self).__init__(name, kwargs.get("base_dir"))
self._interface = interface
self._hierarchy = None
self._got_inputs = False
self._originputs = None
self._output_dir = None
self.iterables = iterables
self.synchronize = synchronize
self.itersource = itersource
self.overwrite = overwrite
self.parameterization = []
self.input_source = {}
self.plugin_args = {}
self.run_without_submitting = run_without_submitting
self._mem_gb = mem_gb
self._n_procs = n_procs
# Downstream n_procs
if hasattr(self._interface.inputs, "num_threads") and self._n_procs is not None:
self._interface.inputs.num_threads = self._n_procs
# Initialize needed_outputs and hashes
self._hashvalue = None
self._hashed_inputs = None
self._needed_outputs = []
self.needed_outputs = needed_outputs
self.config = None
@property
def interface(self):
"""Return the underlying interface object"""
return self._interface
@property
def result(self):
"""Get result from result file (do not hold it in memory)"""
return _load_resultfile(
op.join(self.output_dir(), "result_%s.pklz" % self.name)
)
@property
def inputs(self):
"""Return the inputs of the underlying interface"""
return self._interface.inputs
@property
def outputs(self):
"""Return the output fields of the underlying interface"""
return self._interface._outputs()
@property
def needed_outputs(self):
return self._needed_outputs
@needed_outputs.setter
def needed_outputs(self, new_outputs):
"""Needed outputs changes the hash, refresh if changed"""
new_outputs = sorted(list(set(new_outputs or [])))
if new_outputs != self._needed_outputs:
# Reset hash
self._hashvalue = None
self._hashed_inputs = None
self._needed_outputs = new_outputs
@property
def mem_gb(self):
"""Get estimated memory (GB)"""
if hasattr(self._interface, "estimated_memory_gb"):
self._mem_gb = self._interface.estimated_memory_gb
logger.warning(
'Setting "estimated_memory_gb" on Interfaces has been '
"deprecated as of nipype 1.0, please use Node.mem_gb."
)
return self._mem_gb
@property
def n_procs(self):
"""Get the estimated number of processes/threads"""
if self._n_procs is not None:
return self._n_procs
if hasattr(self._interface.inputs, "num_threads") and isdefined(
self._interface.inputs.num_threads
):
return self._interface.inputs.num_threads
return 1
@n_procs.setter
def n_procs(self, value):
"""Set an estimated number of processes/threads"""
self._n_procs = value
# Overwrite interface's dynamic input of num_threads
if hasattr(self._interface.inputs, "num_threads"):
self._interface.inputs.num_threads = self._n_procs
[docs] def output_dir(self):
"""Return the location of the output directory for the node"""
# Output dir is cached
if self._output_dir:
return self._output_dir
# Calculate & cache otherwise
if self.base_dir is None:
self.base_dir = mkdtemp()
outputdir = self.base_dir
if self._hierarchy:
outputdir = op.join(outputdir, *self._hierarchy.split("."))
if self.parameterization:
params_str = ["{}".format(p) for p in self.parameterization]
if not str2bool(self.config["execution"]["parameterize_dirs"]):
params_str = [_parameterization_dir(p) for p in params_str]
outputdir = op.join(outputdir, *params_str)
self._output_dir = op.realpath(op.join(outputdir, self.name))
return self._output_dir
[docs] def get_output(self, parameter):
"""Retrieve a particular output of the node"""
return getattr(self.result.outputs, parameter, None)
[docs] def help(self):
"""Print interface help"""
self._interface.help()
[docs] def is_cached(self, rm_outdated=False):
"""
Check if the interface has been run previously, and whether
cached results are up-to-date.
"""
outdir = self.output_dir()
# The output folder does not exist: not cached
if not op.exists(outdir) or not op.exists(
op.join(outdir, "result_%s.pklz" % self.name)
):
logger.debug('[Node] Not cached "%s".', outdir)
return False, False
# Check if there are hashfiles
globhashes = glob(op.join(outdir, "_0x*.json"))
unfinished = [path for path in globhashes if path.endswith("_unfinished.json")]
hashfiles = list(set(globhashes) - set(unfinished))
# Update hash
hashed_inputs, hashvalue = self._get_hashval()
hashfile = op.join(outdir, "_0x%s.json" % hashvalue)
logger.debug(
"[Node] Hashes: %s, %s, %s, %s",
hashed_inputs,
hashvalue,
hashfile,
hashfiles,
)
cached = hashfile in hashfiles
# No previous hashfiles found, we're all set.
if cached and len(hashfiles) == 1:
assert hashfile == hashfiles[0]
logger.debug('[Node] Up-to-date cache found for "%s".', self.fullname)
return True, True # Cached and updated
if len(hashfiles) > 1:
if cached:
hashfiles.remove(hashfile) # Do not clean up the node, if cached
logger.warning(
"[Node] Found %d previous hashfiles indicating that the working "
'directory of node "%s" is stale, deleting old hashfiles.',
len(hashfiles),
self.fullname,
)
for rmfile in hashfiles:
os.remove(rmfile)
hashfiles = [hashfile] if cached else []
if not hashfiles:
logger.debug('[Node] No hashfiles found in "%s".', outdir)
assert not cached
return False, False
# At this point only one hashfile is in the folder
# and we directly check whether it is updated
updated = hashfile == hashfiles[0]
if not updated: # Report differences depending on log verbosity
cached = True
logger.info('[Node] Outdated cache found for "%s".', self.fullname)
# If logging is more verbose than INFO (20), print diff between hashes
loglevel = logger.getEffectiveLevel()
if loglevel < INFO: # Lazy logging: only < INFO
exp_hash_file_base = split_filename(hashfiles[0])[1]
exp_hash = exp_hash_file_base[len("_0x") :]
logger.log(
loglevel, "[Node] Old/new hashes = %s/%s", exp_hash, hashvalue
)
try:
prev_inputs = load_json(hashfiles[0])
except Exception:
pass
else:
logger.log(loglevel, dict_diff(prev_inputs, hashed_inputs, 10))
if rm_outdated:
os.remove(hashfiles[0])
assert cached # At this point, node is cached (may not be up-to-date)
return cached, updated
[docs] def hash_exists(self, updatehash=False):
"""
Decorate the new `is_cached` method with hash updating
to maintain backwards compatibility.
"""
# Get a dictionary with hashed filenames and a hashvalue
# of the dictionary itself.
cached, updated = self.is_cached(rm_outdated=True)
outdir = self.output_dir()
hashfile = op.join(outdir, "_0x%s.json" % self._hashvalue)
if updated:
return True, self._hashvalue, hashfile, self._hashed_inputs
# Update only possible if it exists
if cached and updatehash:
logger.debug("[Node] Updating hash: %s", self._hashvalue)
_save_hashfile(hashfile, self._hashed_inputs)
return cached, self._hashvalue, hashfile, self._hashed_inputs
def run(self, updatehash=False):
"""
Execute the node in its directory.
Parameters
----------
updatehash: boolean
When the hash stored in the output directory as a result of a previous run
does not match that calculated for this execution, updatehash=True only
updates the hash without re-running.
"""
if self.config is None:
self.config = {}
self.config = merge_dict(deepcopy(config._sections), self.config)
outdir = self.output_dir()
force_run = self.overwrite or (
self.overwrite is None and self._interface.always_run
)
# Check hash, check whether run should be enforced
logger.info('[Node] Setting-up "%s" in "%s".', self.fullname, outdir)
cached, updated = self.is_cached()
# If the node is cached, check on pklz files and finish
if not force_run and (updated or (not updated and updatehash)):
logger.debug("Only updating node hashes or skipping execution")
inputs_file = op.join(outdir, "_inputs.pklz")
if not op.exists(inputs_file):
logger.debug("Creating inputs file %s", inputs_file)
savepkl(inputs_file, self.inputs.get_traitsfree())
node_file = op.join(outdir, "_node.pklz")
if not op.exists(node_file):
logger.debug("Creating node file %s", node_file)
savepkl(node_file, self)
result = self._run_interface(
execute=False, updatehash=updatehash and not updated
)
logger.info(
'[Node] "%s" found cached%s.',
self.fullname,
" (and hash updated)" * (updatehash and not updated),
)
return result
if cached and updated and not isinstance(self, MapNode):
logger.debug('[Node] Rerunning cached, up-to-date node "%s"', self.fullname)
if not force_run and str2bool(
self.config["execution"]["stop_on_first_rerun"]
):
raise Exception(
'Cannot rerun when "stop_on_first_rerun" is set to True'
)
# Remove any hashfile that exists at this point (re)running.
if cached:
for outdatedhash in glob(op.join(self.output_dir(), "_0x*.json")):
os.remove(outdatedhash)
# _get_hashval needs to be called before running. When there is a valid (or seemingly
# valid cache), the is_cached() member updates the hashval via _get_hashval.
# However, if this node's folder doesn't exist or the result file is not found, then
# the hashval needs to be generated here. See #3026 for a larger context.
self._get_hashval()
# Hashfile while running
hashfile_unfinished = op.join(outdir, "_0x%s_unfinished.json" % self._hashvalue)
# Delete directory contents if this is not a MapNode or can't resume
can_resume = not (self._interface.can_resume and op.isfile(hashfile_unfinished))
if can_resume and not isinstance(self, MapNode):
emptydirs(outdir, noexist_ok=True)
else:
logger.debug(
"[%sNode] Resume - hashfile=%s",
"Map" * int(isinstance(self, MapNode)),
hashfile_unfinished,
)
if isinstance(self, MapNode):
# remove old json files
for filename in glob(op.join(outdir, "_0x*.json")):
os.remove(filename)
# Make sure outdir is created
os.makedirs(outdir, exist_ok=True)
# Store runtime-hashfile, pre-execution report, the node and the inputs set.
_save_hashfile(hashfile_unfinished, self._hashed_inputs)
write_node_report(self, is_mapnode=isinstance(self, MapNode))
savepkl(op.join(outdir, "_node.pklz"), self)
savepkl(op.join(outdir, "_inputs.pklz"), self.inputs.get_traitsfree())
try:
result = self._run_interface(execute=True)
except Exception:
logger.warning('[Node] Error on "%s" (%s)', self.fullname, outdir)
# Tear-up after error
if not silentrm(hashfile_unfinished):
logger.warning(
"""\
Interface finished unexpectedly and the corresponding unfinished hashfile %s \
does not exist. Another nipype instance may be running against the same work \
directory. Please ensure no other concurrent workflows are racing""",
hashfile_unfinished,
)
raise
# Tear-up after success
shutil.move(hashfile_unfinished, hashfile_unfinished.replace("_unfinished", ""))
write_node_report(self, result=result, is_mapnode=isinstance(self, MapNode))
logger.info('[Node] Finished "%s".', self.fullname)
return result
def _get_hashval(self):
"""Return a hash of the input state"""
self._get_inputs()
if self._hashvalue is None and self._hashed_inputs is None:
self._hashed_inputs, self._hashvalue = self.inputs.get_hashval(
hash_method=self.config["execution"]["hash_method"]
)
rm_extra = self.config["execution"]["remove_unnecessary_outputs"]
if str2bool(rm_extra) and self.needed_outputs:
hashobject = md5()
hashobject.update(self._hashvalue.encode())
hashobject.update(str(self.needed_outputs).encode())
self._hashvalue = hashobject.hexdigest()
self._hashed_inputs.append(("needed_outputs", self.needed_outputs))
return self._hashed_inputs, self._hashvalue
def _get_inputs(self):
"""
Retrieve inputs from pointers to results files.
This mechanism can be easily extended/replaced to retrieve data from
other data sources (e.g., XNAT, HTTP, etc.,.)
"""
if self._got_inputs: # Inputs cached
return
if not self.input_source: # No previous nodes
self._got_inputs = True
return
prev_results = defaultdict(list)
for key, info in list(self.input_source.items()):
prev_results[info[0]].append((key, info[1]))
logger.debug(
'[Node] Setting %d connected inputs of node "%s" from %d previous nodes.',
len(self.input_source),
self.name,
len(prev_results),
)
for results_fname, connections in list(prev_results.items()):
outputs = None
try:
outputs = _load_resultfile(results_fname).outputs
except AttributeError as e:
logger.critical("%s", e)
if outputs is None:
raise RuntimeError(
"""\
Error populating the inputs of node "%s": the results file of the source node \
(%s) does not contain any outputs."""
% (self.name, results_fname)
)
for key, conn in connections:
output_value = Undefined
if isinstance(conn, tuple):
value = getattr(outputs, conn[0])
if isdefined(value):
output_value = evaluate_connect_function(
conn[1], conn[2], value
)
else:
output_name = conn
try:
output_value = outputs.trait_get()[output_name]
except AttributeError:
output_value = outputs.dictcopy()[output_name]
logger.debug("output: %s", output_name)
try:
self.set_input(key, deepcopy(output_value))
except traits.TraitError as e:
msg = (
e.args[0],
"",
"Error setting node input:",
"Node: %s" % self.name,
"input: %s" % key,
"results_file: %s" % results_fname,
"value: %s" % str(output_value),
)
e.args = ("\n".join(msg),)
raise
# Successfully set inputs
self._got_inputs = True
def _update_hash(self):
for outdatedhash in glob(op.join(self.output_dir(), "_0x*.json")):
os.remove(outdatedhash)
_save_hashfile(self._hashvalue, self._hashed_inputs)
def _run_interface(self, execute=True, updatehash=False):
if updatehash:
self._update_hash()
return self._load_results()
return self._run_command(execute)
def _load_results(self):
cwd = self.output_dir()
try:
result = _load_resultfile(op.join(cwd, "result_%s.pklz" % self.name))
except (traits.TraitError, EOFError):
logger.debug("Error populating inputs/outputs, (re)aggregating results...")
except (AttributeError, ImportError) as err:
logger.debug(
"attribute error: %s probably using " "different trait pickled file",
str(err),
)
old_inputs = loadpkl(op.join(cwd, "_inputs.pklz"))
self.inputs.trait_set(**old_inputs)
else:
return result
# try aggregating first
if not isinstance(self, MapNode):
self._copyfiles_to_wd(linksonly=True)
aggouts = self._interface.aggregate_outputs(
needed_outputs=self.needed_outputs
)
runtime = Bunch(
cwd=cwd,
returncode=0,
environ=dict(os.environ),
hostname=socket.gethostname(),
)
result = InterfaceResult(
interface=self._interface.__class__,
runtime=runtime,
inputs=self._interface.inputs.get_traitsfree(),
outputs=aggouts,
)
_save_resultfile(
result,
cwd,
self.name,
rebase=str2bool(self.config["execution"]["use_relative_paths"]),
)
else:
logger.debug("aggregating mapnode results")
result = self._run_interface()
return result
def _run_command(self, execute, copyfiles=True):
if not execute:
try:
result = self._load_results()
except (FileNotFoundError, AttributeError):
# if aggregation does not work, rerun the node
logger.info(
"[Node] Some of the outputs were not found: " "rerunning node."
)
copyfiles = False # OE: this was like this before,
execute = True # I'll keep them for safety
else:
logger.info(
'[Node] Cached "%s" - collecting precomputed outputs', self.fullname
)
return result
outdir = self.output_dir()
# Run command: either execute is true or load_results failed.
result = InterfaceResult(
interface=self._interface.__class__,
runtime=Bunch(
cwd=outdir,
returncode=1,
environ=dict(os.environ),
hostname=socket.gethostname(),
),
inputs=self._interface.inputs.get_traitsfree(),
)
if copyfiles:
self._originputs = deepcopy(self._interface.inputs)
self._copyfiles_to_wd(execute=execute)
message = '[Node] Running "{}" ("{}.{}")'.format(
self.name, self._interface.__module__, self._interface.__class__.__name__
)
if issubclass(self._interface.__class__, CommandLine):
try:
with indirectory(outdir):
cmd = self._interface.cmdline
except Exception as msg:
result.runtime.stderr = "{}\n\n{}".format(
getattr(result.runtime, "stderr", ""), msg
)
_save_resultfile(
result,
outdir,
self.name,
rebase=str2bool(self.config["execution"]["use_relative_paths"]),
)
raise
cmdfile = op.join(outdir, "command.txt")
with open(cmdfile, "wt") as fd:
print(cmd + "\n", file=fd)
message += ", a CommandLine Interface with command:\n{}".format(cmd)
logger.info(message)
try:
result = self._interface.run(cwd=outdir)
except Exception as msg:
result.runtime.stderr = "%s\n\n%s".format(
getattr(result.runtime, "stderr", ""), msg
)
_save_resultfile(
result,
outdir,
self.name,
rebase=str2bool(self.config["execution"]["use_relative_paths"]),
)
raise
dirs2keep = None
if isinstance(self, MapNode):
dirs2keep = [op.join(outdir, "mapflow")]
result.outputs = clean_working_directory(
result.outputs,
outdir,
self._interface.inputs,
self.needed_outputs,
self.config,
dirs2keep=dirs2keep,
)
_save_resultfile(
result,
outdir,
self.name,
rebase=str2bool(self.config["execution"]["use_relative_paths"]),
)
return result
def _copyfiles_to_wd(self, execute=True, linksonly=False):
"""copy files over and change the inputs"""
filecopy_info = get_filecopy_info(self.interface)
if not filecopy_info:
# Nothing to be done
return
logger.debug(
"copying files to wd [execute=%s, linksonly=%s]", execute, linksonly
)
outdir = self.output_dir()
if execute and linksonly:
olddir = outdir
outdir = op.join(outdir, "_tempinput")
os.makedirs(outdir, exist_ok=True)
for info in filecopy_info:
files = self.inputs.trait_get().get(info["key"])
if not isdefined(files) or not files:
continue
infiles = ensure_list(files)
if execute:
if linksonly:
if not info["copy"]:
newfiles = copyfiles(
infiles, [outdir], copy=info["copy"], create_new=True
)
else:
newfiles = fnames_presuffix(infiles, newpath=outdir)
newfiles = _strip_temp(
newfiles, op.abspath(olddir).split(op.sep)[-1]
)
else:
newfiles = copyfiles(
infiles, [outdir], copy=info["copy"], create_new=True
)
else:
newfiles = fnames_presuffix(infiles, newpath=outdir)
if not isinstance(files, list):
newfiles = simplify_list(newfiles)
setattr(self.inputs, info["key"], newfiles)
if execute and linksonly:
emptydirs(outdir, noexist_ok=True)
[docs] def update(self, **opts):
"""Update inputs"""
self.inputs.update(**opts)
class JoinNode(Node):
"""Wraps interface objects that join inputs into a list.
Examples
--------
>>> import nipype.pipeline.engine as pe
>>> from nipype import Node, JoinNode, Workflow
>>> from nipype.interfaces.utility import IdentityInterface
>>> from nipype.interfaces import (ants, dcm2nii, fsl)
>>> wf = Workflow(name='preprocess')
>>> inputspec = Node(IdentityInterface(fields=['image']),
... name='inputspec')
>>> inputspec.iterables = [('image',
... ['img1.nii', 'img2.nii', 'img3.nii'])]
>>> img2flt = Node(fsl.ImageMaths(out_data_type='float'),
... name='img2flt')
>>> wf.connect(inputspec, 'image', img2flt, 'in_file')
>>> average = JoinNode(ants.AverageImages(), joinsource='inputspec',
... joinfield='images', name='average')
>>> wf.connect(img2flt, 'out_file', average, 'images')
>>> realign = Node(fsl.FLIRT(), name='realign')
>>> wf.connect(img2flt, 'out_file', realign, 'in_file')
>>> wf.connect(average, 'output_average_image', realign, 'reference')
>>> strip = Node(fsl.BET(), name='strip')
>>> wf.connect(realign, 'out_file', strip, 'in_file')
"""
def __init__(
self, interface, name, joinsource, joinfield=None, unique=False, **kwargs
):
"""
Parameters
----------
interface : interface object
node specific interface (fsl.Bet(), spm.Coregister())
name : alphanumeric string
node specific name
joinsource : node name
name of the join predecessor iterable node
joinfield : string or list of strings
name(s) of list input fields that will be aggregated.
The default is all of the join node input fields.
unique : flag indicating whether to ignore duplicate input values
See Node docstring for additional keyword arguments.
"""
super(JoinNode, self).__init__(interface, name, **kwargs)
self._joinsource = None # The member should be defined
self.joinsource = joinsource # Let the setter do the job
"""the join predecessor iterable node"""
if not joinfield:
# default is the interface fields
joinfield = self._interface.inputs.copyable_trait_names()
elif isinstance(joinfield, (str, bytes)):
joinfield = [joinfield]
self.joinfield = joinfield
"""the fields to join"""
self._inputs = self._override_join_traits(
self._interface.inputs, self.joinfield
)
"""the override inputs"""
self._unique = unique
"""flag indicating whether to ignore duplicate input values"""
self._next_slot_index = 0
"""the joinfield index assigned to an iterated input"""
@property
def joinsource(self):
return self._joinsource
@joinsource.setter
def joinsource(self, value):
"""Set the joinsource property. If the given value is a Node,
then the joinsource is set to the node name.
"""
if isinstance(value, Node):
value = value.name
self._joinsource = value
@property
def inputs(self):
"""The JoinNode inputs include the join field overrides."""
return self._inputs
def _add_join_item_fields(self):
"""Add new join item fields assigned to the next iterated
input
This method is intended solely for workflow graph expansion.
Examples
--------
>>> from nipype.interfaces.utility import IdentityInterface
>>> import nipype.pipeline.engine as pe
>>> from nipype import Node, JoinNode, Workflow
>>> inputspec = Node(IdentityInterface(fields=['image']),
... name='inputspec'),
>>> join = JoinNode(IdentityInterface(fields=['images', 'mask']),
... joinsource='inputspec', joinfield='images', name='join')
>>> join._add_join_item_fields()
{'images': 'imagesJ1'}
Return the {base field: slot field} dictionary
"""
# create the new join item fields
idx = self._next_slot_index
newfields = dict(
[(field, self._add_join_item_field(field, idx)) for field in self.joinfield]
)
# increment the join slot index
logger.debug("Added the %s join item fields %s.", self, newfields)
self._next_slot_index += 1
return newfields
def _add_join_item_field(self, field, index):
"""Add new join item fields qualified by the given index
Return the new field name
"""
# the new field name
name = "%sJ%d" % (field, index + 1)
# make a copy of the join trait
trait = self._inputs.trait(field, False, True)
# add the join item trait to the override traits
self._inputs.add_trait(name, trait)
return name
def _override_join_traits(self, basetraits, fields):
"""Convert the given join fields to accept an input that
is a list item rather than a list. Non-join fields
delegate to the interface traits.
Return the override DynamicTraitedSpec
"""
dyntraits = DynamicTraitedSpec()
if fields is None:
fields = basetraits.copyable_trait_names()
else:
# validate the fields
for field in fields:
if not basetraits.trait(field):
raise ValueError(
"The JoinNode %s does not have a field"
" named %s" % (self.name, field)
)
for name, trait in list(basetraits.items()):
# if a join field has a single inner trait, then the item
# trait is that inner trait. Otherwise, the item trait is
# a new Any trait.
if name in fields and len(trait.inner_traits) == 1:
item_trait = trait.inner_traits[0]
dyntraits.add_trait(name, item_trait)
setattr(dyntraits, name, Undefined)
logger.debug(
"Converted the join node %s field %s trait type from %s to %s",
self,
name,
trait.trait_type.info(),
item_trait.info(),
)
else:
dyntraits.add_trait(name, traits.Any)
setattr(dyntraits, name, Undefined)
return dyntraits
def _run_command(self, execute, copyfiles=True):
"""Collates the join inputs prior to delegating to the superclass."""
self._collate_join_field_inputs()
return super(JoinNode, self)._run_command(execute, copyfiles)
def _collate_join_field_inputs(self):
"""
Collects each override join item field into the interface join
field input."""
for field in self.inputs.copyable_trait_names():
if field in self.joinfield:
# collate the join field
val = self._collate_input_value(field)
try:
setattr(self._interface.inputs, field, val)
except Exception as e:
raise ValueError(
">>JN %s %s %s %s %s: %s"
% (
self,
field,
val,
self.inputs.copyable_trait_names(),
self.joinfield,
e,
)
)
elif hasattr(self._interface.inputs, field):
# copy the non-join field
val = getattr(self._inputs, field)
if isdefined(val):
setattr(self._interface.inputs, field, val)
logger.debug(
"Collated %d inputs into the %s node join fields",
self._next_slot_index,
self,
)
def _collate_input_value(self, field):
"""
Collects the join item field values into a list or set value for
the given field, as follows:
- If the field trait is a Set, then the values are collected into
a set.
- Otherwise, the values are collected into a list which preserves
the iterables order. If the ``unique`` flag is set, then duplicate
values are removed but the iterables order is preserved.
"""
val = [self._slot_value(field, idx) for idx in range(self._next_slot_index)]
basetrait = self._interface.inputs.trait(field)
if isinstance(basetrait.trait_type, traits.Set):
return set(val)
if self._unique:
return list(OrderedDict.fromkeys(val))
return val
def _slot_value(self, field, index):
slot_field = "%sJ%d" % (field, index + 1)
try:
return getattr(self._inputs, slot_field)
except AttributeError as e:
raise AttributeError(
"The join node %s does not have a slot field %s"
" to hold the %s value at index %d: %s"
% (self, slot_field, field, index, e)
)
class MapNode(Node):
"""Wraps interface objects that need to be iterated on a list of inputs.
Examples
--------
>>> from nipype import MapNode
>>> from nipype.interfaces import fsl
>>> realign = MapNode(fsl.MCFLIRT(), 'in_file', 'realign')
>>> realign.inputs.in_file = ['functional.nii',
... 'functional2.nii',
... 'functional3.nii']
>>> realign.run() # doctest: +SKIP
"""
def __init__(
self, interface, iterfield, name, serial=False, nested=False, **kwargs
):
"""
Parameters
----------
interface : interface object
node specific interface (fsl.Bet(), spm.Coregister())
iterfield : string or list of strings
name(s) of input fields that will receive a list of whatever kind
of input they take. the node will be run separately for each
value in these lists. for more than one input, the values are
paired (i.e. it does not compute a combinatorial product).
name : alphanumeric string
node specific name
serial : boolean
flag to enforce executing the jobs of the mapnode in a serial
manner rather than parallel
nested : boolean
support for nested lists. If set, the input list will be flattened
before running and the nested list structure of the outputs will
be resored.
See Node docstring for additional keyword arguments.
"""
super(MapNode, self).__init__(interface, name, **kwargs)
if isinstance(iterfield, (str, bytes)):
iterfield = [iterfield]
self.iterfield = iterfield
self.nested = nested
self._inputs = self._create_dynamic_traits(
self._interface.inputs, fields=self.iterfield
)
self._inputs.on_trait_change(self._set_mapnode_input)
self._got_inputs = False
self._serial = serial
def _create_dynamic_traits(self, basetraits, fields=None, nitems=None):
"""Convert specific fields of a trait to accept multiple inputs
"""
output = DynamicTraitedSpec()
if fields is None:
fields = basetraits.copyable_trait_names()
for name, spec in list(basetraits.items()):
if name in fields and ((nitems is None) or (nitems > 1)):
logger.debug("adding multipath trait: %s", name)
if self.nested:
output.add_trait(name, InputMultiPath(traits.Any()))
else:
output.add_trait(name, InputMultiPath(spec.trait_type))
else:
output.add_trait(name, traits.Trait(spec))
setattr(output, name, Undefined)
value = getattr(basetraits, name)
if isdefined(value):
setattr(output, name, value)
value = getattr(output, name)
return output
def _set_mapnode_input(self, name, newvalue):
logger.debug(
"setting mapnode(%s) input: %s -> %s", str(self), name, str(newvalue)
)
if name in self.iterfield:
setattr(self._inputs, name, newvalue)
else:
setattr(self._interface.inputs, name, newvalue)
def _get_hashval(self):
"""Compute hash including iterfield lists."""
self._get_inputs()
if self._hashvalue is not None and self._hashed_inputs is not None:
return self._hashed_inputs, self._hashvalue
self._check_iterfield()
hashinputs = deepcopy(self._interface.inputs)
for name in self.iterfield:
hashinputs.remove_trait(name)
hashinputs.add_trait(
name, InputMultiPath(self._interface.inputs.traits()[name].trait_type)
)
logger.debug("setting hashinput %s-> %s", name, getattr(self._inputs, name))
if self.nested:
setattr(hashinputs, name, flatten(getattr(self._inputs, name)))
else:
setattr(hashinputs, name, getattr(self._inputs, name))
hashed_inputs, hashvalue = hashinputs.get_hashval(
hash_method=self.config["execution"]["hash_method"]
)
rm_extra = self.config["execution"]["remove_unnecessary_outputs"]
if str2bool(rm_extra) and self.needed_outputs:
hashobject = md5()
hashobject.update(hashvalue.encode())
sorted_outputs = sorted(self.needed_outputs)
hashobject.update(str(sorted_outputs).encode())
hashvalue = hashobject.hexdigest()
hashed_inputs.append(("needed_outputs", sorted_outputs))
self._hashed_inputs, self._hashvalue = hashed_inputs, hashvalue
return self._hashed_inputs, self._hashvalue
@property
def inputs(self):
return self._inputs
@property
def outputs(self):
if self._interface._outputs():
return Bunch(self._interface._outputs().trait_get())
def _make_nodes(self, cwd=None):
if cwd is None:
cwd = self.output_dir()
if self.nested:
nitems = len(flatten(ensure_list(getattr(self.inputs, self.iterfield[0]))))
else:
nitems = len(ensure_list(getattr(self.inputs, self.iterfield[0])))
for i in range(nitems):
nodename = "_%s%d" % (self.name, i)
node = Node(
deepcopy(self._interface),
n_procs=self._n_procs,
mem_gb=self._mem_gb,
overwrite=self.overwrite,
needed_outputs=self.needed_outputs,
run_without_submitting=self.run_without_submitting,
base_dir=op.join(cwd, "mapflow"),
name=nodename,
)
node.plugin_args = self.plugin_args
node.interface.inputs.trait_set(
**deepcopy(self._interface.inputs.trait_get())
)
node.interface.resource_monitor = self._interface.resource_monitor
for field in self.iterfield:
if self.nested:
fieldvals = flatten(ensure_list(getattr(self.inputs, field)))
else:
fieldvals = ensure_list(getattr(self.inputs, field))
logger.debug("setting input %d %s %s", i, field, fieldvals[i])
setattr(node.inputs, field, fieldvals[i])
node.config = self.config
yield i, node
def _collate_results(self, nodes):
finalresult = InterfaceResult(
interface=[], runtime=[], provenance=[], inputs=[], outputs=self.outputs
)
returncode = []
for i, nresult, err in nodes:
finalresult.runtime.insert(i, None)
returncode.insert(i, err)
if nresult:
if hasattr(nresult, "runtime"):
finalresult.interface.insert(i, nresult.interface)
finalresult.inputs.insert(i, nresult.inputs)
finalresult.runtime[i] = nresult.runtime
if hasattr(nresult, "provenance"):
finalresult.provenance.insert(i, nresult.provenance)
if self.outputs:
for key, _ in list(self.outputs.items()):
rm_extra = self.config["execution"]["remove_unnecessary_outputs"]
if str2bool(rm_extra) and self.needed_outputs:
if key not in self.needed_outputs:
continue
values = getattr(finalresult.outputs, key)
if not isdefined(values):
values = []
if nresult and nresult.outputs:
values.insert(i, nresult.outputs.trait_get()[key])
else:
values.insert(i, None)
defined_vals = [isdefined(val) for val in values]
if any(defined_vals) and finalresult.outputs:
setattr(finalresult.outputs, key, values)
if self.nested:
for key, _ in list(self.outputs.items()):
values = getattr(finalresult.outputs, key)
if isdefined(values):
values = unflatten(
values, ensure_list(getattr(self.inputs, self.iterfield[0]))
)
setattr(finalresult.outputs, key, values)
if returncode and any([code is not None for code in returncode]):
msg = []
for i, code in enumerate(returncode):
if code is not None:
msg += ["Subnode %d failed" % i]
msg += ["Error: %s" % str(code)]
raise Exception(
"Subnodes of node: %s failed:\n%s" % (self.name, "\n".join(msg))
)
return finalresult
[docs] def get_subnodes(self):
"""Generate subnodes of a mapnode and write pre-execution report"""
self._get_inputs()
self._check_iterfield()
write_node_report(self, result=None, is_mapnode=True)
return [node for _, node in self._make_nodes()]
[docs] def num_subnodes(self):
"""Get the number of subnodes to iterate in this MapNode"""
self._get_inputs()
self._check_iterfield()
if self._serial:
return 1
if self.nested:
return len(ensure_list(flatten(getattr(self.inputs, self.iterfield[0]))))
return len(ensure_list(getattr(self.inputs, self.iterfield[0])))
def _get_inputs(self):
old_inputs = self._inputs.trait_get()
self._inputs = self._create_dynamic_traits(
self._interface.inputs, fields=self.iterfield
)
self._inputs.trait_set(**old_inputs)
super(MapNode, self)._get_inputs()
def _check_iterfield(self):
"""Checks iterfield
* iterfield must be in inputs
* number of elements must match across iterfield
"""
for iterfield in self.iterfield:
if not isdefined(getattr(self.inputs, iterfield)):
raise ValueError(
("Input %s was not set but it is listed " "in iterfields.")
% iterfield
)
if len(self.iterfield) > 1:
first_len = len(ensure_list(getattr(self.inputs, self.iterfield[0])))
for iterfield in self.iterfield[1:]:
if first_len != len(ensure_list(getattr(self.inputs, iterfield))):
raise ValueError(
(
"All iterfields of a MapNode have to "
"have the same length. %s"
)
% str(self.inputs)
)
def _run_interface(self, execute=True, updatehash=False):
"""Run the mapnode interface
This is primarily intended for serial execution of mapnode. A parallel
execution requires creation of new nodes that can be spawned
"""
self._check_iterfield()
cwd = self.output_dir()
if not execute:
return self._load_results()
# Set up mapnode folder names
if self.nested:
nitems = len(ensure_list(flatten(getattr(self.inputs, self.iterfield[0]))))
else:
nitems = len(ensure_list(getattr(self.inputs, self.iterfield[0])))
nnametpl = "_%s{}" % self.name
nodenames = [nnametpl.format(i) for i in range(nitems)]
# Run mapnode
outdir = self.output_dir()
result = InterfaceResult(
interface=self._interface.__class__,
runtime=Bunch(
cwd=outdir,
returncode=1,
environ=dict(os.environ),
hostname=socket.gethostname(),
),
inputs=self._interface.inputs.get_traitsfree(),
)
try:
result = self._collate_results(
_node_runner(
self._make_nodes(cwd),
updatehash=updatehash,
stop_first=str2bool(
self.config["execution"]["stop_on_first_crash"]
),
)
)
except Exception as msg:
result.runtime.stderr = "%s\n\n%s".format(
getattr(result.runtime, "stderr", ""), msg
)
_save_resultfile(
result,
outdir,
self.name,
rebase=str2bool(self.config["execution"]["use_relative_paths"]),
)
raise
# And store results
_save_resultfile(result, cwd, self.name, rebase=False)
# remove any node directories no longer required
dirs2remove = []
for path in glob(op.join(cwd, "mapflow", "*")):
if op.isdir(path):
if path.split(op.sep)[-1] not in nodenames:
dirs2remove.append(path)
for path in dirs2remove:
logger.debug('[MapNode] Removing folder "%s".', path)
shutil.rmtree(path)
return result