Timeseries Analysis¶
- CPAC.timeseries.gen_roi_timeseries(data_file, template, output_type)[source]¶
Extract mean of voxel across all timepoints for each node in roi mask.
- Parameters:
data_file (
string
) – path to input functional datatemplate (
string
) – path to input roi mask in functional native spaceoutput_type (
list
) – list of two boolean values suggesting the output types - numpy npz file and csv format
- Returns:
out_list – list of 1D file, txt file, csv file and/or npz file containing mean timeseries for each scan corresponding to each node in roi mask
- Return type:
- Raises:
- CPAC.timeseries.gen_vertices_timeseries(rh_surface_file, lh_surface_file)[source]¶
Extract timeseries from vertices of a freesurfer surface file.
- Parameters:
rh_surface_file (
string (mgz/mgh file)
) – left hemisphere FreeSurfer surface filelh_surface_file (
string (mgz/mgh file)
) – right hemisphere FreeSurfer surface file
- Returns:
out_list – list of vertices timeseries csv files
- Return type:
string (list
offile)
- CPAC.timeseries.gen_voxel_timeseries(data_file: str, template: str) str [source]¶
Extract timeseries for each voxel in the data that is present in the input mask.
- CPAC.timeseries.get_roi_timeseries(wf_name: str = 'roi_timeseries') Workflow [source]¶
Extract timeseries for each node in the ROI mask.
For each node, mean across all the timepoint is calculated and stored in csv and npz format.
- Parameters:
wf_name (
string
) – name of the workflow
Notes
Workflow Inputs:
inputspec.rest : string (nifti file) path to input functional data inputspec.output_type : string (list of boolean) list of boolean for csv and npz file formats input_roi.roi : string (nifti file) path to ROI mask
Workflow Outputs:
outputspec.roi_ts : numpy array Voxel time series stored in numpy array, which is used to create ndmg graphs. outputspec.roi_outputs : string (list of files) Voxel time series stored in 1D (column wise timeseries for each node), csv and/or npz files. By default it outputs timeseries in a 1D file. The 1D file is compatible with afni interfaces.
Example
>>> import CPAC.timeseries.timeseries_analysis as t >>> wf = t.get_roi_timeseries() >>> wf.inputs.inputspec.rest = '/home/data/rest.nii.gz' >>> wf.inputs.input_roi.roi = '/usr/local/fsl/data/atlases/HarvardOxford/HarvardOxford-cort-maxprob-thr0-2mm.nii.gz' >>> wf.inputs.inputspec.output_type = [True,True] >>> wf.base_dir = './' >>> wf.run()
- CPAC.timeseries.get_spatial_map_timeseries(wf_name: str = 'spatial_map_timeseries') Workflow [source]¶
Regress each provided spatial map to the subjects functional 4D file…
…in order to return a timeseries for each of the maps.
- Parameters:
wf_name (
string
) – name of the workflow
Notes
Workflow Inputs:
inputspec.subject_rest : string (nifti file) path to input functional data inputspec.subject_mask : string (nifti file) path to subject functional mask inputspec.spatial_map : string (nifti file) path to Spatial Maps inputspec.demean : Boolean control whether to demean model and data
Workflow Outputs:
outputspec.subject_timeseries: string (txt file) list of time series stored in a space separated txt file the columns are spatial maps, rows are timepoints
Example
>>> import CPAC.timeseries.timeseries_analysis as t >>> wf = t.get_spatial_map_timeseries() >>> wf.inputs.inputspec.subject_rest = '/home/data/rest.nii.gz' >>> wf.inputs.inputspec.subject_mask = '/home/data/rest_mask.nii.gz' >>> wf.inputs.inputspec.ICA_map = '/home/data/spatialmaps/spatial_map.nii.gz' >>> wf.inputs.inputspec.demean = True >>> wf.base_dir = './' >>> wf.run()
- CPAC.timeseries.get_vertices_timeseries(wf_name='vertices_timeseries')[source]¶
Workflow to get vertices time series from a FreeSurfer surface file.
- Parameters:
wf_name (
string
) – name of the workflow- Returns:
wflow – workflow object
- Return type:
workflow object
Notes
Workflow Inputs:
inputspec.lh_surface_file : string (nifti file) left hemishpere surface file inputspec.rh_surface_file : string (nifti file) right hemisphere surface file
Workflow Outputs:
outputspec.surface_outputs: string (csv and/or npz files) list of timeseries matrices stored in csv and/or npz files
Example
>>> import CPAC.timeseries.timeseries_analysis as t >>> wf = t.get_vertices_timeseries() >>> wf.inputs.inputspec.lh_surface_file = '/home/data/outputs/SurfaceRegistration/lh_surface_file.nii.gz' >>> wf.inputs.inputspec.rh_surface_file = '/home/data/outputs/SurfaceRegistration/rh_surface_file.nii.gz' >>> wf.base_dir = './' >>> wf.run()
- CPAC.timeseries.get_voxel_timeseries(wf_name: str = 'voxel_timeseries') Workflow [source]¶
Extract time series for each voxel in data that are present in the input mask.
- Parameters:
wf_name (
string
) – name of the workflow
Notes
Workflow Inputs:
inputspec.rest : string (nifti file) path to input functional data inputspec.output_type : string (list of boolean) list of boolean for csv and npz file formats input_mask.masks : string (nifti file) path to ROI mask
Workflow Outputs:
outputspec.mask_outputs: string (1D, csv and/or npz files) list of time series matrices stored in csv and/or npz files.By default it outputs mean of voxels across each time point in a afni compatible 1D file. High Level Workflow Graph:
Example
>>> import CPAC.timeseries.timeseries_analysis as t >>> wf = t.get_voxel_timeseries() >>> wf.inputs.inputspec.rest = '/home/data/rest.nii.gz' >>> wf.inputs.input_mask.mask = '/usr/local/fsl/data/standard/MNI152_T1_2mm_brain.nii.gz' >>> wf.inputs.inputspec.output_type = [True,True] >>> wf.base_dir = './' >>> wf.run()