Utilities¶
BIDS Utilities¶
- exception CPAC.utils.bids_utils.SpecifiedBotoCoreError(msg: str, *args, **kwargs)[source]¶
Specified
BotoCoreError
.
- CPAC.utils.bids_utils.apply_modifications(yaml_contents: str, modifications: list[Callable[[str], str]] | None) str [source]¶
Apply modification functions to YAML contents
- CPAC.utils.bids_utils.bids_entities_from_filename(filename)[source]¶
Function to collect a list of BIDS entities from a given filename.
Examples
>>> bids_entities_from_filename( ... 's3://fake/data/sub-0001/ses-NFB3/func/' ... 'sub-0001_ses-NFB3_task-MSIT_bold.nii.gz') ['sub-0001', 'ses-NFB3', 'task-MSIT', 'bold']
- CPAC.utils.bids_utils.bids_gen_cpac_sublist(bids_dir, paths_list, config_dict, creds_path, dbg=False, raise_error=True, only_one_anat=True)[source]¶
Generates a CPAC formatted subject list from information contained in a BIDS formatted set of data.
- Parameters:
bids_dir (
str
) – base directory that contains all of the data, this could be a directory that contains data for a multiple BIDS datasets, in which case the intervening directories will be interpreted as site namespaths_list (
str
) – lists of all nifti files found in bids_dir, these paths are relative to bids_dirconfig_dict (
dict
) – dictionary that contains information from the JSON sidecars found in bids_dir, keys are relative paths and values are dictionaries containing all of the parameter information. if config_dict is None, the subject list will be built without the parameterscreds_path (
str
) – if using S3 bucket, this path credentials needed to access the bucket, if accessing anonymous bucket, this can be set to Nonedbg (
bool
) – indicating whether or not the debug statements should be printedraise_error (
bool
)only_one_anat (
bool
) – The “anat” key for a subject expects a string value, but we can temporarily store a list instead by passing True here if we will be filtering that list down to a single string later
- Returns:
a list of dictionaries suitable for use by CPAC to specify data to be processed
- Return type:
- CPAC.utils.bids_utils.bids_match_entities(file_list, entities, suffix)[source]¶
Function to subset a list of filepaths by a passed BIDS entity.
- Parameters:
- Return type:
Examples
>>> bids_match_entities([ ... 's3://fake/data/sub-001_ses-001_task-MSIT_bold.nii.gz', ... 's3://fake/data/sub-001_ses-001_bold.nii.gz', ... 's3://fake/data/sub-001_ses-001_task-PEER1_bold.nii.gz', ... 's3://fake/data/sub-001_ses-001_task-PEER2_bold.nii.gz' ... ], 'task-PEER1', 'bold') ['s3://fake/data/sub-001_ses-001_task-PEER1_bold.nii.gz'] >>> bids_match_entities([ ... 's3://fake/data/sub-001_ses-001_task-PEER1_bold.nii.gz', ... 's3://fake/data/sub-001_ses-001_task-PEER2_bold.nii.gz' ... ], 'PEER', 'bold') Traceback (most recent call last): LookupError: No match found for provided entity "PEER" in - s3://fake/data/sub-001_ses-001_task-PEER1_bold.nii.gz - s3://fake/data/sub-001_ses-001_task-PEER2_bold.nii.gz Perhaps you meant one of these? - task-PEER1 - task-PEER2
- CPAC.utils.bids_utils.bids_parse_sidecar()[source]¶
Uses the BIDS principle of inheritance to build a data structure that maps parameters in side car .json files to components in the names of corresponding nifti files.
- Parameters:
config_dict – dictionary that maps paths of sidecar json files (the key) to a dictionary containing the contents of the files (the values)
dbg – boolean flag that indicates whether or not debug statements should be printed
- Returns:
a dictionary that maps parameters to components from BIDS filenames such as sub, sess, run, acq, and scan type
- CPAC.utils.bids_utils.bids_remove_entity(name, key)[source]¶
Remove an entity from a BIDS string by key.
- Parameters:
- Returns:
BIDS name with entity removed
- Return type:
Examples
>>> bids_remove_entity('atlas-Yeo_space-MNI152NLin6_res-2x2x2', 'space') 'atlas-Yeo_res-2x2x2' >>> bids_remove_entity('atlas-Yeo_space-MNI152NLin6_res-2x2x2', 'res') 'atlas-Yeo_space-MNI152NLin6'
- CPAC.utils.bids_utils.bids_retrieve_params(bids_config_dict, f_dict, dbg=False)[source]¶
Retrieve the BIDS parameters from bids_config_dict for BIDS file corresponding to f_dict. If an exact match for f_dict is not found the nearest match is returned, corresponding to the BIDS inheritance principle.
- Parameters:
bids_config_dict – BIDS configuration dictionary, this is a multi-level dictionary that maps the components of a bids filename (i.e. sub, ses, acq, run) to a dictionary that contains the BIDS parameters (RepetitionTime, EchoTime, etc). This information is extracted from sidecar json files using the principle of inheritance using the bids_parse_configs function
f_dict – Dictionary built from the name of a file in the BIDS format. This is built using the bids_decode_fname by splitting on “-” and “_” delimeters
dbg – boolean flag that indicates whether or not debug statements should be printed, defaults to “False”
- Returns:
returns a dictionary that contains the BIDS parameters
- CPAC.utils.bids_utils.bids_shortest_entity(file_list)[source]¶
Function to return the single file with the shortest chain of BIDS entities from a given list, returning the first if more than one have the same minimum length.
Examples
>>> bids_shortest_entity([ ... 's3://fake/data/sub-001_ses-001_task-MSIT_bold.nii.gz', ... 's3://fake/data/sub-001_ses-001_bold.nii.gz', ... 's3://fake/data/sub-001_ses-001_task-PEER1_bold.nii.gz', ... 's3://fake/data/sub-001_ses-001_task-PEER2_bold.nii.gz' ... ]) 's3://fake/data/sub-001_ses-001_bold.nii.gz'
- CPAC.utils.bids_utils.camelCase(string: str) str [source]¶
Convert a hyphenated string to camelCase.
Examples
>>> camelCase('PearsonNilearn-aCompCor') 'PearsonNilearnACompCor' >>> camelCase('mean-Pearson-Nilearn-aCompCor') 'meanPearsonNilearnACompCor'
- CPAC.utils.bids_utils.cl_strip_brackets(arg_list)[source]¶
Removes ‘[’ from before first and ‘]’ from after final arguments in a list of commandline arguments.
Examples
>>> cl_strip_brackets('[a b c]'.split(' ')) ['a', 'b', 'c'] >>> cl_strip_brackets('a b c'.split(' ')) ['a', 'b', 'c'] >>> cl_strip_brackets('[ a b c ]'.split(' ')) ['a', 'b', 'c']
- CPAC.utils.bids_utils.coerce_data_config_strings(contents: str) str [source]¶
Coerge subject_id and unique_id to be strings.
- CPAC.utils.bids_utils.collect_bids_files_configs(bids_dir, aws_input_creds='')[source]¶
- Parameters:
bids_dir
aws_input_creds
- Returns:
- CPAC.utils.bids_utils.combine_multiple_entity_instances(bids_str: str) str [source]¶
Combines mutliple instances of a key in a BIDS string to a single instance by camelCasing and concatenating the values.
Examples
>>> combine_multiple_entity_instances( ... 'sub-1_ses-HBN_site-RU_task-rest_atlas-AAL_' ... 'desc-Nilearn_desc-36-param_suffix.ext') 'sub-1_ses-HBN_site-RU_task-rest_atlas-AAL_desc-Nilearn36Param_suffix.ext' >>> combine_multiple_entity_instances( ... 'sub-1_ses-HBN_site-RU_task-rest_' ... 'run-1_framewise-displacement-power.1D') 'sub-1_ses-HBN_site-RU_task-rest_run-1_framewiseDisplacementPower.1D'
- CPAC.utils.bids_utils.create_cpac_data_config(bids_dir, participant_labels=None, aws_input_creds=None, skip_bids_validator=False, only_one_anat=True)[source]¶
Create a C-PAC data config YAML file from a BIDS directory.
- Parameters:
- Return type:
- CPAC.utils.bids_utils.gen_bids_outputs_sublist(base_path, paths_list, key_list, creds_path)[source]¶
- CPAC.utils.bids_utils.insert_entity(resource, key, value)[source]¶
Insert a f’{key}-{value}’ BIDS entity before desc- if present or before the suffix otherwise.
Examples
>>> insert_entity('run-1_desc-preproc_bold', 'reg', 'default') 'run-1_reg-default_desc-preproc_bold' >>> insert_entity('run-1_bold', 'reg', 'default') 'run-1_reg-default_bold' >>> insert_entity('run-1_desc-preproc_bold', 'filt', 'notch4c0p31bw0p12') 'run-1_filt-notch4c0p31bw0p12_desc-preproc_bold' >>> insert_entity('run-1_reg-default_bold', 'filt', 'notch4c0p31bw0p12') 'run-1_reg-default_filt-notch4c0p31bw0p12_bold'
- CPAC.utils.bids_utils.load_cpac_data_config(data_config_file, participant_labels, aws_input_creds)[source]¶
Loads the file as a check to make sure it is available and readable.
- CPAC.utils.bids_utils.load_yaml_config(config_filename: str, aws_input_creds, modifications: list[Callable[[str], str]] | None = None) dict | list | str [source]¶
Load a YAML config file, possibly from AWS, with modifications applied.
modifications should be a list of functions that take a single string argument (the loaded YAML contents) and return a single string argument (the modified YAML contents).
- CPAC.utils.bids_utils.res_in_filename(cfg, label)[source]¶
Specify resolution in filename.
- Parameters:
cfg (
CPAC.utils.configuration.Configuration
)label (
str
)
- Returns:
label
- Return type:
Examples
>>> from CPAC.utils.configuration import Configuration >>> res_in_filename(Configuration({ ... 'registration_workflows': { ... 'anatomical_registration': {'resolution_for_anat': '2x2x2'}}}), ... 'sub-1_res-anat_bold') 'sub-1_res-2x2x2_bold' >>> res_in_filename(Configuration({ ... 'registration_workflows': { ... 'anatomical_registration': {'resolution_for_anat': '2x2x2'}}}), ... 'sub-1_res-3mm_bold') 'sub-1_res-3mm_bold'
- CPAC.utils.bids_utils.sub_list_filter_by_labels(sub_list, labels)[source]¶
Function to filter a sub_list by provided BIDS labels for specified suffixes.
BIDS Data Configuration¶
Configuration¶
C-PAC Configuration class and related functions.
- class CPAC.utils.configuration.configuration.Configuration(config_map: dict | None = None, skip_env_check: bool = False)[source]¶
Class to set dictionary keys as map attributes.
If the given dictionary includes the key
FROM
, that key’s value will form the base of the Configuration object with the values in the given dictionary overriding matching keys in the base at any depth. If noFROM
key is included, the base Configuration is the blank preconfiguration.Changed in version 1.8.5: From version 1.8.0 to version 1.8.5, unspecified keys were based on the default configuration rather than the blank preconfiguration.
FROM
accepts either the name of a preconfigured pipleine or a path to a YAML file.Given a Configuration
c
, and a list or tuple of an attribute name and nested keyskeys = ['attribute', 'key0', 'key1']
orkeys = ('attribute', 'key0', 'key1')
, the value ‘value’ nested inc.attribute = {'key0': {'key1': 'value'}}
can be accessed (get and set) in any of the following ways (and more):
c.attribute['key0']['key1'] c['attribute']['key0']['key1'] c['attribute', 'key0', 'key1'] c[keys]
Examples
>>> c = Configuration({}) >>> c['pipeline_setup', 'pipeline_name'] 'cpac-blank-template' >>> c = Configuration({'pipeline_setup': { ... 'pipeline_name': 'example_pipeline'}}) >>> c['pipeline_setup', 'pipeline_name'] 'example_pipeline' >>> c['pipeline_setup', 'pipeline_name'] = 'new_pipeline2' >>> c['pipeline_setup', 'pipeline_name'] 'new_pipeline2'
>>> from CPAC.utils.tests.configs import SLACK_420349
# test “FROM: /path/to/file” >>> slack_420349_filepath = Configuration( … yaml.safe_load(SLACK_420349[‘filepath’])) >>> slack_420349_filepath[‘pipeline_setup’, ‘pipeline_name’] ‘slack_420349_filepath’
# test “FROM: preconfig” >>> slack_420349_preconfig = Configuration( … yaml.safe_load(SLACK_420349[‘preconfig’])) >>> slack_420349_preconfig[‘pipeline_setup’, ‘pipeline_name’] ‘slack_420349_preconfig’
- set_from_ENV(conf)[source]¶
Replace strings like $VAR and ${VAR} with environment variable values.
- Parameters:
conf (
any
)- Returns:
conf
- Return type:
any
Examples
>>> import os >>> os.environ['SAMPLE_VALUE_SFE'] = '/example/path' >>> c = Configuration() >>> c.set_from_ENV({'key': {'nested_list': [ ... 1, '1', '$SAMPLE_VALUE_SFE/extended']}}) {'key': {'nested_list': [1, '1', '/example/path/extended']}} >>> c.set_from_ENV(['${SAMPLE_VALUE_SFE}', 'SAMPLE_VALUE_SFE']) ['/example/path', 'SAMPLE_VALUE_SFE'] >>> del os.environ['SAMPLE_VALUE_SFE']
- set_without_ENV(conf)[source]¶
Retain strings like $VAR and ${VAR} when setting attributes.
- Parameters:
conf (
any
)- Returns:
conf
- Return type:
any
Examples
>>> import os >>> os.environ['SAMPLE_VALUE_SFE'] = '/example/path' >>> c = Configuration() >>> c.set_without_ENV({'key': {'nested_list': [ ... 1, '1', '$SAMPLE_VALUE_SFE/extended']}}) {'key': {'nested_list': [1, '1', '$SAMPLE_VALUE_SFE/extended']}} >>> c.set_without_ENV(['${SAMPLE_VALUE_SFE}', 'SAMPLE_VALUE_SFE']) ['${SAMPLE_VALUE_SFE}', 'SAMPLE_VALUE_SFE'] >>> del os.environ['SAMPLE_VALUE_SFE']
- switch_is_off(key: str | list[str], exclusive: bool = False) bool [source]¶
Return True if the key is set to ‘off’ OR ‘on’ and ‘off’ or False otherwise.
Used for tracking forking.
- Parameters:
- Returns:
True if key is set to ‘off’, False if not set to ‘off’. If exclusive is set to True, return False if the key is set to ‘on’ and ‘off’.
- Return type:
Examples
>>> c = Configuration() >>> c.switch_is_off(['nuisance_corrections', '2-nuisance_regression', ... 'run']) True >>> c = Configuration({'nuisance_corrections': { ... '2-nuisance_regression': {'run': [True, False]}}}) >>> c.switch_is_off(['nuisance_corrections', '2-nuisance_regression', ... 'run']) True >>> c.switch_is_off(['nuisance_corrections', '2-nuisance_regression', ... 'run'], exclusive=True) False
- switch_is_on(key: str | list[str], exclusive: bool = False) bool [source]¶
Return True if the key is set to ‘on’ OR ‘on’ and ‘off’ or False otherwise.
Used for tracking forking.
- Parameters:
- Returns:
True if key is set to ‘on’, False if not set to ‘on’. If exclusive is set to True, return False if the key is set to ‘on’ and ‘off’.
- Return type:
Examples
>>> c = Configuration() >>> c.switch_is_on(['nuisance_corrections', '2-nuisance_regression', ... 'run']) False >>> c = Configuration({'nuisance_corrections': { ... '2-nuisance_regression': {'run': [True, False]}}}) >>> c.switch_is_on(['nuisance_corrections', '2-nuisance_regression', ... 'run']) True >>> c.switch_is_on(['nuisance_corrections', '2-nuisance_regression', ... 'run'], exclusive=True) False
- switch_is_on_off(key: str | list[str]) bool [source]¶
Return True if the key is set to both ‘on’ and ‘off’ or False otherwise.
Used for tracking forking.
- Parameters:
- Returns:
True if key is set to ‘on’ and ‘off’, False otherwise
- Return type:
Examples
>>> c = Configuration() >>> c.switch_is_on_off(['nuisance_corrections', ... '2-nuisance_regression', 'run']) False >>> c = Configuration({'nuisance_corrections': { ... '2-nuisance_regression': {'run': [True, False]}}}) >>> c.switch_is_on_off(['nuisance_corrections', ... '2-nuisance_regression', 'run']) True
- exception CPAC.utils.configuration.configuration.ConfigurationDictUpdateConflation[source]¶
Custom exception to clarify similar methods.
- class CPAC.utils.configuration.configuration.Preconfiguration(preconfig, skip_env_check=False)[source]¶
A preconfigured Configuration.
- Parameters:
preconfig (
str
) – The canonical name of the preconfig to load
- CPAC.utils.configuration.configuration.check_pname(p_name: str, pipe_config: Configuration) str [source]¶
Check / set p_name, the str representation of a pipeline for use in filetrees.
- Parameters:
pipe_config (
Configuration
)
- Return type:
p_name
Examples
>>> c = Configuration() >>> check_pname(None, c) 'pipeline_cpac-blank-template' >>> check_pname('cpac-default-pipeline', c) 'pipeline_cpac-default-pipeline' >>> check_pname('pipeline_cpac-default-pipeline', c) 'pipeline_cpac-default-pipeline' >>> check_pname('different-name', Configuration()) 'pipeline_different-name' >>> p_name = check_pname(None, Preconfiguration('blank')) >>> p_name 'pipeline_cpac-blank-template' >>> p_name = check_pname(None, Preconfiguration('default')) >>> p_name 'pipeline_cpac-default-pipeline'
- CPAC.utils.configuration.configuration.collect_key_list(config_dict)[source]¶
Return a list of lists of keys for a nested dictionary.
Examples
>>> collect_key_list({'test': {'nested': 1, 'dict': 2}}) [['test', 'nested'], ['test', 'dict']]
- CPAC.utils.configuration.configuration.configuration_from_file(config_file)[source]¶
Load a Configuration from a pipeline config file.
- Parameters:
config_file (
str
) – path to configuration file- Return type:
- CPAC.utils.configuration.configuration.nipype_friendly_name(name: str) str [source]¶
Replace each sequence of non-alphanumeric characters…
…with a single underscore and remove any leading underscores.
- CPAC.utils.configuration.configuration.preconfig_yaml(preconfig_name='default', load=False)[source]¶
Get the path to a preconfigured pipeline’s YAML file.
Raises BadParameter if an invalid preconfig name is given.
- CPAC.utils.configuration.configuration.set_subject(sub_dict: dict, pipe_config: Configuration, p_name: str | None = None) tuple[str, str, str] [source]¶
Set pipeline name and log directory path for a given sub_dict.
- Parameters:
- Returns:
Examples
>>> from tempfile import TemporaryDirectory >>> from CPAC.utils.configuration import Configuration >>> sub_dict = {'site_id': 'site1', 'subject_id': 'sub1', ... 'unique_id': 'uid1'} >>> with TemporaryDirectory() as tmpdir: ... subject_id, p_name, log_dir = set_subject( ... sub_dict, Configuration({'pipeline_setup': {'log_directory': ... {'path': tmpdir}}})) >>> subject_id 'sub1_uid1' >>> p_name 'pipeline_cpac-blank-template' >>> log_dir.endswith(f'{p_name}/{subject_id}') True
Tools for configuration differences.
- class CPAC.utils.configuration.diff.DiffDict(*args, **kwargs)[source]¶
Class to semantically store a dictionary of set differences from
Configuration(S) - Configuration(T)
.
- class CPAC.utils.configuration.diff.DiffValue(s_value, t_value)[source]¶
Class to semantically store values of set difference from
Configuration(S) - Configuration(T)
.- left¶
value from
Configuration(S)
(alias fors_value
)- Type:
any
- s_value¶
value from
Configuration(S)
- Type:
any
- t_value¶
value from
Configuration(T)
- Type:
any
- CPAC.utils.configuration.diff.dct_diff(dct1, dct2)[source]¶
Function to compare 2 nested dicts, dropping values unspecified in the second. Adapted from https://github.com/FCP-INDI/CPAC_regtest_pack/blob/9056ef63/cpac_pipe_diff.py#L31-L78.
- Parameters:
- Returns:
diff – each value is a ~DiffValue of values from
dct1
,dct2
for each differing key between original dicts or a subdictionary thereof- Return type:
Example
>>> import yaml >>> from . import Preconfiguration, preconfig_yaml >>> def read_yaml_file(yaml_file): ... return yaml.safe_load(open(yaml_file, 'r')) >>> pipeline = read_yaml_file(preconfig_yaml('default')) >>> dct_diff(pipeline, pipeline) {} >>> pipeline2 = Preconfiguration('fmriprep-options') >>> dct_diff(pipeline, pipeline2)['pipeline_setup']['pipeline_name'] ('cpac-default-pipeline', 'cpac_fmriprep-options')
- CPAC.utils.configuration.diff.diff_dict(diff)[source]¶
Method to return a dict of only changes given a nested dict of
(dict1_value, dict2_value)
tuples.Examples
>>> diff_dict({'anatomical_preproc': { ... 'brain_extraction': {'extraction': { ... 'run': DiffValue([True], False), ... 'using': DiffValue(['3dSkullStrip'], ... ['niworkflows-ants'])}}}}) {'anatomical_preproc': {'brain_extraction': {'extraction': {'run': False, 'using': ['niworkflows-ants']}}}}
Functions to create YAML configuration files from templates.
- class CPAC.utils.configuration.yaml_template.YamlTemplate(original_yaml, base_config=None)[source]¶
A class to link YAML comments to the contents of a YAML file.
- comments¶
Flat dictionary with
'.'
-delimited pseudo-nested structure. E.g., comments for{'pipeline_setup': {'pipeline_name': value}}
would be keyed{'pipeline_setup': comment0, 'pipeline_setup.pipeline_name: comment1}
to allow comments at each level of depth.- Type:
- get_nested¶
- Type:
method
- dump(new_dict, parents=None)[source]¶
Dump YAML from a new dictionary with comments from template dictionary.
- get_nested(_d, keys)¶
- CPAC.utils.configuration.yaml_template.create_yaml_from_template(d: Configuration | dict, template: str = 'default', import_from: str | None = None, skip_env_check: bool | None = False) str [source]¶
Save dictionary to a YAML file, keeping the structure from the template.
For example, first level comments and ordering.
It may not be fully robust to YAML structures, but it works for C-PAC config files!
- Parameters:
Examples
>>> import yaml >>> from CPAC.utils.configuration import Configuration, Preconfiguration >>> Configuration(yaml.safe_load(create_yaml_from_template({}))).dict( ... ) == Configuration({}).dict() True >>> fmriprep_options = Preconfiguration('fmriprep-options') >>> fmriprep_options - Configuration({}) != {} True >>> fmriprep_options - fmriprep_options {} >>> fmriprep_options - Preconfiguration('fmriprep-options') {} >>> fmriprep_options - Configuration({'FROM': 'fmriprep-options'}) {} >>> fmriprep_options - Configuration(yaml.safe_load( ... create_yaml_from_template(fmriprep_options, import_from=None))) {} >>> fmriprep_options - Configuration(yaml.safe_load( ... create_yaml_from_template(fmriprep_options, ... import_from='default'))) {} >>> fmriprep_options - Configuration(yaml.safe_load( ... create_yaml_from_template(fmriprep_options, import_from='blank'))) {} >>> different_sca = Configuration({'pipeline_setup': { ... 'pipeline_name': 'different_SCA'}, ... 'seed_based_correlation_analysis': {'run': 'y', ... 'norm_timeseries_for_DR': 'Off'}}) >>> (Configuration(yaml.safe_load(create_yaml_from_template( ... different_sca))) - Configuration()).get( ... 'seed_based_correlation_analysis') not in (None, {}) True
- CPAC.utils.configuration.yaml_template.hash_data_config(sub_list)[source]¶
Generate a short SHA1 hash from a data config subject list of dicts.
Examples
>>> sub_list = [{'site_id': f'site{i}', 'subject_id': f'sub{i}', ... 'unique_id': f'uid{i}'} for i in range(1, 4)] >>> sub_list[0] {'site_id': 'site1', 'subject_id': 'sub1', 'unique_id': 'uid1'} >>> hash_data_config(sub_list) '6f49a278'
- CPAC.utils.configuration.yaml_template.indent(line_level, plus=2)[source]¶
Return an indent string for a given level.
- CPAC.utils.configuration.yaml_template.update_a_preconfig(preconfig, import_from)[source]¶
Update a preconfig with comments from another config.
- CPAC.utils.configuration.yaml_template.update_all_preconfigs()[source]¶
Update all other preconfigs with comments from default.
Create FMRIB’s Local Analysis of Mixed Effects (FLAME) Model Files¶
- CPAC.utils.create_flame_model_files.create_con_file(con_vecs, con_names, col_names, model_name, current_output, out_dir)[source]¶
- CPAC.utils.create_flame_model_files.create_con_ftst_file(con_file, model_name, current_output, output_dir, column_names, coding_scheme, group_sep)[source]¶
Create the contrasts and fts file.
- CPAC.utils.create_flame_model_files.create_flame_model_files(design_matrix, col_names, contrasts_vectors, contrast_names, custom_contrasts_csv, ftest_list, group_sep, grouping_vector, coding_scheme, model_name, output_measure, output_dir)[source]¶
- CPAC.utils.create_flame_model_files.create_fts_file(ftest_list, con_names, model_name, current_output, out_dir)[source]¶
Create FSL FLAME Preset¶
- CPAC.utils.create_fsl_flame_preset.create_contrasts_template_df(design_df, contrasts_dct_list=None)[source]¶
Create the template Pandas DataFrame for the contrasts matrix CSV.
The headers in the contrasts matrix needs to match the headers of the design matrix.
- CPAC.utils.create_fsl_flame_preset.create_design_matrix_df(group_list, pheno_df=None, ev_selections=None, pheno_sub_label=None, pheno_ses_label=None, pheno_site_label=None, ses_id=False)[source]¶
Create the design matrix intended for group-level analysis via the FSL FLAME tool.
This does NOT create the final .mat file that FSL FLAME takes in. This is an intermediary design matrix CSV meant for the user to review.
If there is a phenotype CSV provided, this function will align the participant-session ID labels in the CPAC individual-level analysis output directory with the values listed in the phenotype file.
- CPAC.utils.create_fsl_flame_preset.preset_paired_two_group(group_list, conditions, condition_type='session', output_dir=None, model_name='two_sample_unpaired_T-test')[source]¶
Set up the design matrix and contrasts matrix for running an paired two-group difference (two-sample paired T-test).
group_list: a list of strings- sub_ses unique IDs conditions: a two-item list of strings- session or series/scan names of
the two sessions or two scans (per participant) you wish to compare
- condition_type: a string, either “session” or “scan”, depending on what
is in “conditions”
output_dir: (optional) string of the output directory path model_name: (optional) name/label of the model to run
- Sets up the model described here:
- https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide
#Paired_Two-Group_Difference_.28Two-Sample_Paired_T-Test.29
- CPAC.utils.create_fsl_flame_preset.preset_single_group_avg(group_list, pheno_df=None, covariate=None, pheno_sub_label=None, output_dir=None, model_name='one_sample_T-test')[source]¶
Set up the design matrix CSV for running a single group average (one-sample T-test).
- CPAC.utils.create_fsl_flame_preset.preset_tripled_two_group(group_list, conditions, condition_type='Sessions', output_dir=None, model_name='tripled_T-test')[source]¶
Set up the design matrix and contrasts matrix for running a tripled two-group difference (‘tripled’ T-test).
group_list: a list of strings- sub_ses unique IDs conditions: a three-item list of strings- session or series/scan names of
the three sessions or three scans (per participant) you wish to compare
- condition_type: a string, either “session” or “scan”, depending on what
is in “conditions”
output_dir: (optional) string of the output directory path model_name: (optional) name/label of the model to run
- Sets up the model described here:
- https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide
#Tripled_Two-Group_Difference_.28.22Tripled.22_T-Test.29
- CPAC.utils.create_fsl_flame_preset.preset_unpaired_two_group(group_list, pheno_df, groups, pheno_sub_label, output_dir=None, model_name='two_sample_unpaired_T-test')[source]¶
Set up the design matrix and contrasts matrix for running an unpaired two-group difference (two-sample unpaired T-test).
group_list: a list of strings- sub_ses unique IDs pheno_df: a Pandas DataFrame object of the phenotypic file CSV/matrix groups: a list of either one or two strings- design matrix EV/covariate
labels to take from the phenotype DF and include in the model
- pheno_sub_label: a string of the label name of the column in the phenotype
file that holds the participant/session ID for each row
output_dir: (optional) string of the output directory path model_name: (optional) name/label of the model to run
- Sets up the model described here:
- https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide
#Unpaired_Two-Group_Difference_.28Two-Sample_Unpaired_T-Test.29
Only one “group” will be provided usually if the two groups in the phenotypic information you wish to compare are encoded in one covariate column, as categorical information. Thus, providing this one name will pull it from the phenotype file, and this function will break it out into two columns using dummy-coding.
- CPAC.utils.create_fsl_flame_preset.read_group_list_text_file(group_list_text_file)[source]¶
Read in the group-level analysis participant-session list text file.
- CPAC.utils.create_fsl_flame_preset.read_pheno_csv_into_df(pheno_csv, id_label=None)[source]¶
Read the phenotypic file CSV or TSV into a Pandas DataFrame.
- CPAC.utils.create_fsl_flame_preset.run(pipeline_dir, derivative_list, z_thresh, p_thresh, preset=None, group_list_text_file=None, pheno_file=None, pheno_sub_label=None, output_dir=None, model_name=None, covariate=None, condition_type=None, run=False)[source]¶
- CPAC.utils.create_fsl_flame_preset.write_config_dct_to_yaml(config_dct, out_file=None)[source]¶
Write out a configuration dictionary into a YAML file.
Create FSL create_fsl_model¶
Create Group Analysis Info Files¶
Datasource¶
Utilities for sourcing data.
- CPAC.utils.datasource.bidsier_prefix(unique_id)[source]¶
Return a BIDSier prefix for a given unique_id.
Examples
>>> bidsier_prefix('01_1') 'sub-01_ses-1' >>> bidsier_prefix('sub-01_ses-1') 'sub-01_ses-1' >>> bidsier_prefix('sub-01_1') 'sub-01_ses-1' >>> bidsier_prefix('01_ses-1') 'sub-01_ses-1'
- CPAC.utils.datasource.calc_delta_te_and_asym_ratio(effective_echo_spacing: float, echo_times: list) tuple[float, float] [source]¶
Calcluate
deltaTE
andees_asym_ratio
from given metadata.
- CPAC.utils.datasource.check_for_s3(file_path, creds_path=None, dl_dir=None, img_type='other', verbose=False)[source]¶
Check if passed-in file is on S3.
- CPAC.utils.datasource.check_func_scan(func_scan_dct, scan)[source]¶
Run some checks on the functional timeseries-related files.
For a given series/scan name or label.
- CPAC.utils.datasource.create_anat_datasource(wf_name='anat_datasource')[source]¶
Create a dataflow for anatomical images.
- CPAC.utils.datasource.create_check_for_s3_node(name, file_path, img_type='other', creds_path=None, dl_dir=None, map_node=False)[source]¶
Create a node to check if a file is on S3.
- CPAC.utils.datasource.create_fmap_datasource(fmap_dct, wf_name='fmap_datasource')[source]¶
Return the field map files…
…from the dictionary of functional files described in the data configuration (sublist) YAML file.
- CPAC.utils.datasource.create_func_datasource(rest_dict, rpool, wf_name='func_datasource')[source]¶
Return the functional timeseries-related file paths for each series/scan…
…from the dictionary of functional files described in the data configuration (sublist) YAML file.
Scan input (from inputnode) is an iterable.
- CPAC.utils.datasource.create_general_datasource(wf_name)[source]¶
Create a general-purpose datasource node.
- CPAC.utils.datasource.create_grp_analysis_dataflow(wf_name='gp_dataflow')[source]¶
Create a dataflow for group analysis.
- CPAC.utils.datasource.create_roi_mask_dataflow(masks, wf_name='datasource_roi_mask')[source]¶
Create a dataflow for ROI masks.
- CPAC.utils.datasource.create_spatial_map_dataflow(spatial_maps, wf_name='datasource_maps')[source]¶
Create a dataflow for spatial maps.
- CPAC.utils.datasource.extract_scan_params_dct(scan_params_dct)[source]¶
Extract the scan parameters dictionary from the data configuration file.
- CPAC.utils.datasource.gather_echo_times(echotime_1, echotime_2, echotime_3=None, echotime_4=None)[source]¶
Gather the echo times from the field map data.
- CPAC.utils.datasource.gather_extraction_maps(c)[source]¶
Gather the timeseries and SCA analysis configurations.
- CPAC.utils.datasource.get_fmap_phasediff_metadata(data_config_scan_params)[source]¶
Return the scan parameters for a field map phasediff scan.
- CPAC.utils.datasource.get_highest_local_res(template: Path | str, tagname: str) Path [source]¶
Return the highest resolution of a template in the same local path.
Given a reference template path and a resolution string, get all resolutions of that template in the same local path and return the highest resolution.
- Parameters:
- Return type:
- Raises:
LookupError – If no matching local template is found.
Examples
>>> get_highest_local_res( ... '/cpac_templates/MacaqueYerkes19_T1w_2mm_brain.nii.gz', '2mm') PosixPath('/cpac_templates/MacaqueYerkes19_T1w_0.5mm_brain.nii.gz') >>> get_highest_local_res( ... '/cpac_templates/dne_T1w_2mm.nii.gz', '2mm') Traceback (most recent call last): ... LookupError: Could not find template /cpac_templates/dne_T1w_2mm.nii.gz
- CPAC.utils.datasource.get_rest(scan, rest_dict, resource='scan')[source]¶
Return the path of the chosen resource in the functional file dictionary.
scan: the scan/series name or label rest_dict: the dictionary read in from the data configuration YAML file
(sublist) nested under ‘func:’
- resource: the dictionary key
scan - the functional timeseries scan_parameters - path to the scan parameters JSON file, or
a dictionary containing scan parameters information (to be phased out in the future)
- CPAC.utils.datasource.ingress_func_metadata(wf, cfg, rpool, sub_dict, subject_id, input_creds_path, unique_id=None, num_strat=None)[source]¶
Ingress metadata for functional scans.
- CPAC.utils.datasource.match_epi_fmaps(bold_pedir, epi_fmap_one, epi_fmap_params_one, epi_fmap_two=None, epi_fmap_params_two=None)[source]¶
Match EPI field maps to the BOLD scan.
Parse the field map files in the data configuration and determine which ones have the same and opposite phase-encoding directions as the BOLD scan in the current pipeline.
- Example - parse the files under the ‘fmap’ level, i.e. ‘epi_AP’:
anat: /path/to/T1w.nii.gz fmap:
- epi_AP:
scan: /path/to/field-map.nii.gz scan_parameters: <config dictionary containing phase-encoding
direction>
- func:
- rest_1:
scan: /path/to/bold.nii.gz scan_parameters: <config dictionary of BOLD scan parameters>
Check PhaseEncodingDirection field in the metadata for the BOLD.
Check whether there are one or two EPI’s in the field map data.
Grab the one or two EPI field maps.
- CPAC.utils.datasource.res_string_to_tuple(resolution)[source]¶
Convert a resolution string to a tuple of floats.
- CPAC.utils.datasource.resample_func_roi(in_func, in_roi, realignment, identity_matrix)[source]¶
Resample functional image to ROI or ROI to functional image using flirt.
Datatypes¶
Custom datatypes for C-PAC.
- class CPAC.utils.datatypes.ItemFromList(list_of_one, msg=None)[source]¶
Coerce single-item lists into just the only item in the list. Returns item if item is not a list, set, or tuple. Raises CoerceInvalid if impossible.
Examples
>>> ItemFromList(['seagull']) 'seagull' >>> ItemFromList(['two', 'seagulls']) Traceback (most recent call last): ... voluptuous.error.CoerceInvalid: Cannot coerce list of length 2 to item >>> ItemFromList('string') 'string'
- class CPAC.utils.datatypes.ListFromItem(*args, **kwargs)[source]¶
Subclass of list to coerce non-lists into lists.
Examples
>>> list('one') ['o', 'n', 'e'] >>> ListFromItem('one') ['one'] >>> list(['one']) ['one'] >>> ListFromItem(['one']) ['one'] >>> list() [] >>> ListFromItem() [] >>> list(None) Traceback (most recent call last): ... TypeError: 'NoneType' object is not iterable >>> ListFromItem(None) []
Documentation¶
Utilties for C-PAC documentation.
- CPAC.utils.docs.deprecated(version: str | None = None, explanation: str | None = None) Callable [source]¶
Mark a function as deprecated.
- CPAC.utils.docs.docstring_parameter(*args, **kwargs) Callable [source]¶
Parameterize docstrings.
Use double-curly-braces ({{}}) for literal curly braces.
Examples
>>> @docstring_parameter('test', answer='Yes it does.') ... def do_nothing(): ... '''Does this {} do anything? {answer}''' ... pass >>> print(do_nothing.__doc__) Does this test do anything? Yes it does. >>> @docstring_parameter('test', answer='It should not.') ... def how_about_now(): ... '''How about {{ this }}?''' ... pass >>> print(how_about_now.__doc__) How about { this }?
- CPAC.utils.docs.outdent_lines(docstring: str, spaces: int = 4) str [source]¶
Outdent lines in a string by specified number of spaces.
Only outdents lines that are at least that indented. Useful for combining docstrings.
Examples
>>> import re >>> re.findall(r'^ Only.*$', outdent_lines.__doc__, flags=re.MULTILINE) [' Only outdents lines that are at least that indented.'] >>> re.findall(r'^Only.*$', outdent_lines.__doc__, flags=re.MULTILINE) [] >>> re.findall(r'^ Only.*$', outdent_lines(outdent_lines.__doc__), ... flags=re.MULTILINE) [] >>> re.findall(r'^Only.*$', outdent_lines(outdent_lines.__doc__), ... flags=re.MULTILINE) ['Only outdents lines that are at least that indented.'] >>> re.findall(r'^ Only.*$', outdent_lines(outdent_lines.__doc__, 3), ... flags=re.MULTILINE) [' Only outdents lines that are at least that indented.']
Extract Data¶
- class CPAC.utils.extract_data.Configuration(config_map)[source]¶
Set dictionary keys as map attributes.
- CPAC.utils.extract_data.extract_data(c, param_map)[source]¶
Generate a CPAC input subject list Python file.
The method extracts anatomical and functional data for each site (if multiple site) and/or scan parameters for each site and put it into a data structure read by Python.
Examples
- subjects_list =[
- {
‘subject_id’ : ‘0050386’, ‘unique_id’ : ‘session_1’, ‘anat’: ‘/Users/home/data/NYU/0050386/session_1/anat_1/anat.nii.gz’, ‘rest’:{
‘rest_1_rest’ : ‘/Users/home/data/NYU/0050386/session_1/rest_1/rest.nii.gz’, ‘rest_2_rest’ : ‘/Users/home/data/NYU/0050386/session_1/rest_2/rest.nii.gz’, }
- ‘scan_parameters’:{
‘tr’: ‘2’, ‘acquisition’: ‘alt+z2’, ‘reference’: ‘17’, ‘first_tr’: ‘’, ‘last_tr’: ‘’, }
},
]
or
- subjects_list =[
- {
‘subject_id’ : ‘0050386’, ‘unique_id’ : ‘session_1’, ‘anat’: ‘/Users/home/data/NYU/0050386/session_1/anat_1/anat.nii.gz’, ‘rest’:{
‘rest_1_rest’ : ‘/Users/home/data/NYU/0050386/session_1/rest_1/rest.nii.gz’, ‘rest_2_rest’ : ‘/Users/home/data/NYU/0050386/session_1/rest_2/rest.nii.gz’, }
},
]
- CPAC.utils.extract_data.generate_supplementary_files(data_config_outdir, data_config_name)[source]¶
Generate phenotypic template file and subject list for group analysis.
Extract Data (Multiscan)¶
- CPAC.utils.extract_data_multiscan.extract_data(c, param_map)[source]¶
Method to generate a CPAC input subject list python file. The method extracts anatomical functional data and scan parameters for each site( if multiple site) and for each scan and put it into a data structure read by python.
Note:¶
Use this tool only if the scan parameters are different for each scan as shown in the example below.
Example:¶
- subjects_list = [
- {
‘subject_id’: ‘0021001’, ‘unique_id’: ‘session2’, ‘anat’: ‘/home/data/multiband_data/NKITRT/0021001/anat/mprage.nii.gz’, ‘rest’:{
‘RfMRI_mx_1400_rest’: ‘/home/data/multiband_data/NKITRT/0021001/session2/RfMRI_mx_1400/rest.nii.gz’, ‘RfMRI_mx_645_rest’: ‘/home/data/multiband_data/NKITRT/0021001/session2/RfMRI_mx_645/rest.nii.gz’, ‘RfMRI_std_2500_rest’: ‘/home/data/multiband_data/NKITRT/0021001/session2/RfMRI_std_2500/rest.nii.gz’, },
- ‘scan_parameters’:{
- ‘TR’:{
‘RfMRI_mx_1400_rest’: ‘1.4’, ‘RfMRI_mx_645_rest’: ‘1.4’, ‘RfMRI_std_2500_rest’: ‘2.5’, },
- ‘Acquisition’:{
‘RfMRI_mx_1400_rest’: ‘/home/data/1400.txt’, ‘RfMRI_mx_645_rest’: ‘/home/data/645.txt’, ‘RfMRI_std_2500_rest’: ‘/home/data/2500.txt’, },
- ‘Reference’:{
‘RfMRI_mx_1400_rest’: ‘32’, ‘RfMRI_mx_645_rest’: ‘20’, ‘RfMRI_std_2500_rest’: ‘19’, },
- ‘FirstTR’:{
‘RfMRI_mx_1400_rest’: ‘7’, ‘RfMRI_mx_645_rest’: ‘15’, ‘RfMRI_std_2500_rest’: ‘4’, },
- ‘LastTR’:{
‘RfMRI_mx_1400_rest’: ‘440’, ‘RfMRI_mx_645_rest’: ‘898’, ‘RfMRI_std_2500_rest’: ‘None’, },
}
},
]
- CPAC.utils.extract_data_multiscan.generate_suplimentary_files(output_path)[source]¶
Method to generate phenotypic template file and subject list for group analysis.
Extract Parameters¶
- CPAC.utils.extract_parameters.grab(output_dir, scrubbing)[source]¶
Method to grab all the motion parameters and power parameters file from each subject for each pipeline and merge them.
- Parameters:
output_dir (
string
) – Path to the datasink output directory of CPAC
Google Analytics¶
- CPAC.utils.ga.track_event(category, action, uid=None, label=None, value=0, software_version=None, timeout=2, thread=True)[source]¶
Record an event with Google Analytics.
- Parameters:
tracking_id (
str
) – Google Analytics tracking ID.category (
str
) – Event category.action (
str
) – Event action.uid (
str
) – User unique ID, assigned when popylar was installed.label (
str
) – Event label.value (
int
) – Event value.software_version (
str
) – Records a version of the software.timeout (
float
) – Maximal duration (in seconds) for the network connection to track the event. After this duration has elapsed with no response (e.g., on a slow network connection), the tracking is dropped.
Interfaces¶
Function Interfaces¶
Function interface utilities for C-PAC.
- class CPAC.utils.interfaces.function.Function(input_names=None, output_names='out', function=None, imports=None, as_module=False, **inputs)[source]¶
Runs arbitrary function as an interface
>>> func = 'def func(arg1, arg2=5): return arg1 + arg2' >>> fi = Function(input_names=['arg1', 'arg2'], output_names=['out']) >>> fi.inputs.function_str = func >>> res = fi.run(arg1=1) >>> res.outputs.out 6
Can automatically set a module name on the interface.
Automatically imports global Nipype loggers.
- static sig_imports(imports: list[str]) Callable [source]¶
Set an
ns_imports
attribute on a function for Function-node functions.This can be useful for classes needed for decorators, typehints and for avoiding redefinitions.
- Parameters:
imports (
list
ofstr
) – import statements to import the function in an otherwise empty namespace. If these collide with imports defined via theFunction.__init__
initialization method, the imports given as a parameter here will be overridden by those from the initializer.- Returns:
func
- Return type:
function
Examples
See the defintion of
calculate_FD_J
to see the decorator tested here being applied. >>> from CPAC.generate_motion_statistics import calculate_FD_J >>> calc_fdj = Function(input_names=[‘in_file’, ‘calc_from’, ‘center’], … output_names=[‘out_file’], … function=calculate_FD_J, … as_module=True) >>> calc_fdj.imports == [“from CPAC.utils.interfaces.function import Function”, … *calculate_FD_J.ns_imports, *_AUTOLOGGING_IMPORTS] True >>> from inspect import signature >>> from nipype.utils.functions import (getsource, … create_function_from_source) >>> f = create_function_from_source(getsource(calculate_FD_J), … calc_fdj.imports) >>> inspect.signature(calculate_FD_J) == inspect.signature(f) True
Tests¶
Miscellaneous¶
Miscellaneous utilities for Nipype translation of ANTs workflows.
This functionality is adapted from poldracklab/niworkflows: https://github.com/poldracklab/niworkflows/blob/994dd2dc/niworkflows/utils/misc.py https://fmriprep.readthedocs.io/ https://poldracklab.stanford.edu/ We are temporarily maintaining our own copy for more granular control.
Monitoring¶
Customize Nipype’s process monitoring for use in C-PAC.
See https://fcp-indi.github.io/docs/developer/nodes for C-PAC-specific documentation. See https://nipype.readthedocs.io/en/latest/api/generated/nipype.utils.profiler.html for Nipype’s documentation.
- class CPAC.utils.monitoring.LoggingHTTPServer(pipeline_name, logging_dir='', host='', port=8080, request=<class 'CPAC.utils.monitoring.monitoring.LoggingRequestHandler'>)[source]¶
- CPAC.utils.monitoring.failed_to_start(log_dir, exception)[source]¶
Launch a failed-to-start logger for a run that failed to start.
Must be called from within an
except
block.
- CPAC.utils.monitoring.getLogger(name)[source]¶
Get a mock logger if one exists, falling back on real loggers.
- Parameters:
name (
str
)- Returns:
logger
- Return type:
CPAC.utils.monitoring.custom_logging.MockLogger
orlogging.Logger
- CPAC.utils.monitoring.log_nodes_cb(node, status)[source]¶
- Function to record node run statistics to a log file as json
dictionaries
- nodenipype.pipeline.engine.Node
the node being logged
- statusstring
acceptable values are ‘start’, ‘end’; otherwise it is considered and error
- None
this function does not return any values, it logs the node status info to the callback logger
Modified from https://github.com/nipy/nipype/blob/5ab2fa0/nipype/utils/profiler.py#L112-L156
- CPAC.utils.monitoring.monitor_server(pipeline_name, logging_dir, host='0.0.0.0', port=8080)[source]¶
- CPAC.utils.monitoring.set_up_logger(name, filename=None, level=None, log_dir=None, mock=False, overwrite_existing=False)[source]¶
Initialize a logger.
- Parameters:
name (
str
) – logger name (for subsequent calls tologging.getLogger
) to write to the same log file)filename (
str
, optional) – filename to write log to. If not specified, filename will be the same asname
with the extensionlog
level (
str
, optional) – one of{critical, error, warning, info, debug, notset}
, case-insensitivelog_dir (
str
, optional)mock (
bool
, optional) – ifTrue
, return aCPAC.utils.monitoring.MockLogger
instead of alogging.Logger
- Returns:
logger – initialized logging Handler
- Return type:
Examples
>>> lg = set_up_logger('test') >>> MockLogger._get_first_file_handler(lg.handlers).baseFilename.split('/')[-1] 'test.log' >>> lg.level 0 >>> lg = set_up_logger('second_test', 'specific_filename.custom', 'debug') >>> MockLogger._get_first_file_handler(lg.handlers).baseFilename.split('/')[-1] 'specific_filename.custom' >>> lg.level 10 >>> lg = set_up_logger('third_test', mock=True) >>> getLogger('third_test') == lg True >>> 'third_test' in MOCK_LOGGERS True >>> lg.delete() >>> 'third_test' in MOCK_LOGGERS False
NeuroData’s MRI to Graphs (NDMG | m2g) Utilities¶
- class CPAC.utils.ndmg_utils.graph(N, rois, attr=None, sens='dwi')[source]¶
-
- cor_graph(timeseries, attr=None)[source]¶
Takes timeseries and produces a correlation matrix Positional Arguments:
- timeseries:
- -the timeseries file to extract correlation for.
dimensions are [numrois]x[numtimesteps].
- make_graph(streamlines, attr=None)[source]¶
Takes streamlines and produces a graph Positional Arguments:
- streamlines:
Fiber streamlines either file or array in a dipy EuDX or compatible format.
- CPAC.utils.ndmg_utils.ndmg_roi_timeseries(func_file, label_file)[source]¶
Function to extract average timeseries for the voxels in each roi of the labelled atlas. Returns the roi timeseries as a numpy.ndarray. Positional Arguments
- func_file:
the path to the 4d volume to extract timeseries
- label_file:
- the path to the labelled atlas containing labels
for the voxels in the fmri image
- roits_file:
the path to where the roi timeseries will be saved. If
None, don’t save and just return the roi_timeseries.
# Adapted from ndmg v0.1.1 # Copyright 2016 NeuroData (http://neurodata.io)
Neuroimaging Informatics Technology Initiative (NIfTI) Utilities¶
Utlities for NIfTI images.
- CPAC.utils.nifti_utils.inverse_nifti_values(image)[source]¶
Replace zeros by ones and non-zero values by 1.
- Parameters:
image (
str
ornibabel.nifti1.Nifti1Image
) – path to the nifti file to be inverted or the image already loaded through nibabel- Returns:
output
- Return type:
Nibabel Nifti1Image
- CPAC.utils.nifti_utils.more_zeros_than_ones(image)[source]¶
Return True if there are more zeros than other values in a given nifti image.
- Parameters:
image (
str
ornibabel.nifti1.Nifti1Image
) – path to the nifti file to be inverted or the image already loaded through nibabel- Returns:
more_zeros
- Return type:
boolean
- CPAC.utils.nifti_utils.nifti_image_input(image: str | Nifti1Image) Nifti1Image [source]¶
Test if an input is a path or a nifti.image and the image loaded through nibabel.
- Parameters:
image (
str
ornibabel.nifti1.Nifti1Image
) – path to the nifti file or the image already loaded through nibabel- Returns:
img – load and return the nifti image if image is a path, otherwise simply return image
- Return type:
nibabel.nifti1.Nifti1Image
Outputs¶
- class CPAC.utils.outputs.Outputs[source]¶
- all_native_filter = 0 True 1 True 2 True 3 True 4 False ... 307 False 308 False 309 False 310 False 311 False Name: Space, Length: 312, dtype: bool¶
- all_template_filter = 0 False 1 False 2 False 3 False 4 True ... 307 False 308 False 309 False 310 False 311 False Name: Space, Length: 312, dtype: bool¶
- anat = ['space-longitudinal_desc-brain_mask', 'space-longitudinal_label-CSF_desc-preproc_mask', 'space-longitudinal_label-CSF_mask', 'space-longitudinal_label-GM_desc-preproc_mask', 'space-longitudinal_label-GM_mask', 'space-longitudinal_label-WM_desc-preproc_mask', 'space-longitudinal_label-WM_mask', 'label-CSF_desc-eroded_mask', 'label-CSF_desc-preproc_mask', 'label-CSF_mask', 'label-GM_desc-eroded_mask', 'label-GM_desc-preproc_mask', 'label-GM_mask', 'label-WM_desc-eroded_mask', 'label-WM_desc-preproc_mask', 'label-WM_mask', 'space-T1w_desc-acpcbrain_mask', 'space-T1w_desc-brain_mask', 'space-T1w_desc-eroded_mask', 'space-template_desc-brain_mask', 'label-CSF_probseg', 'label-GM_probseg', 'label-WM_probseg', 'desc-T1wAxial_quality', 'desc-T1wSagittal_quality', 'desc-dsegAxial_quality', 'desc-dsegSagittal_quality', 'hemi-L_desc-surfaceMap_thickness', 'hemi-R_desc-surfaceMap_thickness', 'hemi-L_desc-surfaceMap_volume', 'hemi-R_desc-surfaceMap_volume', 'hemi-L_desc-surfaceMesh_pial', 'hemi-R_desc-surfaceMesh_pial', 'raw-average', 'hemi-L_desc-surfaceMesh_smoothwm', 'hemi-R_desc-surfaceMesh_smoothwm', 'atlas-DesikanKilliany_space-fsLR_den-32k_dlabel', 'atlas-Destrieux_space-fsLR_den-32k_dlabel', 'atlas-DesikanKilliany_space-fsLR_den-164k_dlabel', 'atlas-Destrieux_space-fsLR_den-164k_dlabel', 'hemi-L_desc-surfaceMesh_sphere', 'hemi-R_desc-surfaceMesh_sphere', 'hemi-L_desc-surfaceMap_sulc', 'hemi-R_desc-surfaceMap_sulc', 'hemi-L_desc-surface_curv', 'hemi-R_desc-surface_curv', 'hemi-L_desc-surfaceMesh_white', 'hemi-R_desc-surfaceMesh_white', 'wmparc', 'space-symtemplate_desc-brain_T1w', 'desc-brain_T1w', 'desc-head_T1w', 'desc-preproc_T1w', 'desc-reorient_T1w', 'desc-restore_T1w', 'desc-restore-brain_T1w', 'space-template_desc-brain_T1w', 'space-template_desc-preproc_T1w', 'space-template_desc-head_T1w', 'space-template_desc-T1w_mask', 'space-longitudinal_label-CSF_probseg', 'space-longitudinal_label-GM_probseg', 'space-longitudinal_label-WM_probseg', 'from-longitudinal_to-symtemplate_mode-image_desc-linear_xfm', 'from-longitudinal_to-symtemplate_mode-image_desc-nonlinear_xfm', 'from-longitudinal_to-symtemplate_mode-image_xfm', 'from-longitudinal_to-template_mode-image_desc-linear_xfm', 'from-longitudinal_to-template_mode-image_desc-nonlinear_xfm', 'from-longitudinal_to-template_mode-image_xfm', 'from-symtemplate_to-longitudinal_mode-image_desc-linear_xfm', 'from-symtemplate_to-longitudinal_mode-image_desc-nonlinear_xfm', 'from-symtemplate_to-longitudinal_mode-image_xfm', 'from-symtemplate_to-T1w_mode-image_desc-linear_xfm', 'from-symtemplate_to-T1w_mode-image_desc-nonlinear_xfm', 'from-symtemplate_to-T1w_mode-image_xfm', 'from-T1w_to-symtemplate_mode-image_desc-linear_xfm', 'from-T1w_to-symtemplate_mode-image_desc-nonlinear_xfm', 'from-T1w_to-symtemplate_mode-image_xfm', 'from-T1w_to-template_mode-image_desc-linear_xfm', 'from-T1w_to-template_mode-image_desc-nonlinear_xfm', 'from-T1w_to-template_mode-image_xfm', 'from-template_to-longitudinal_mode-image_desc-linear_xfm', 'from-template_to-longitudinal_mode-image_desc-nonlinear_xfm', 'from-template_to-longitudinal_mode-image_xfm', 'from-template_to-T1w_mode-image_desc-linear_xfm', 'from-template_to-T1w_mode-image_desc-nonlinear_xfm', 'from-template_to-T1w_mode-image_xfm', 'space-template_label-CSF_mask', 'space-template_label-WM_mask', 'space-template_label-GM_mask', 'dseg']¶
- any = ['alff', 'desc-sm_alff', 'desc-sm-zstd_alff', 'desc-zstd_alff', 'space-template_alff', 'space-template_desc-sm_alff', 'space-template_desc-sm-zstd_alff', 'space-template_desc-zstd_alff', 'desc-brain_bold', 'desc-mean_bold', 'desc-motion_bold', 'desc-preproc_bold', 'desc-sm_bold', 'sbref', 'space-EPItemplate_bold', 'space-EPItemplate_desc-brain_bold', 'space-EPItemplate_desc-mean_bold', 'space-EPItemplate_desc-preproc_bold', 'space-symtemplate_desc-sm_bold', 'space-T1w_sbref', 'space-template_bold', 'space-template_desc-brain_bold', 'space-template_desc-head_bold', 'space-template_desc-mean_bold', 'space-template_desc-preproc_bold', 'space-template_desc-scout_bold', 'space-template_sbref', 'space-template_desc-DualReg_correlations', 'space-template_desc-MeanSCA_correlations', 'space-template_desc-MultReg_correlations', 'space-template_desc-ndmg_correlations', 'space-template_desc-PearsonAfni_correlations', 'space-template_desc-PartialAfni_correlations', 'space-template_desc-PearsonNilearn_correlations', 'space-template_desc-PartialNilearn_correlations', 'space-template_dcb', 'space-template_desc-sm_dcb', 'space-template_desc-sm-zstd_dcb', 'space-template_desc-zstd_dcb', 'space-template_dcw', 'space-template_desc-sm_dcw', 'space-template_desc-sm-zstd_dcw', 'space-template_desc-zstd_dcw', 'space-template_ecb', 'space-template_desc-sm_ecb', 'space-template_desc-sm-zstd_ecb', 'space-template_desc-zstd_ecb', 'space-template_ecw', 'space-template_desc-sm_ecw', 'space-template_desc-sm-zstd_ecw', 'space-template_desc-zstd_ecw', 'desc-sm_falff', 'desc-sm-zstd_falff', 'desc-zstd_falff', 'falff', 'space-template_desc-sm_falff', 'space-template_desc-sm-zstd_falff', 'space-template_desc-zstd_falff', 'space-template_falff', 'space-template_lfcdb', 'space-template_desc-sm_lfcdb', 'space-template_desc-sm-zstd_lfcdb', 'space-template_desc-zstd_lfcdb', 'space-template_lfcdw', 'space-template_desc-sm_lfcdw', 'space-template_desc-sm-zstd_lfcdw', 'space-template_desc-zstd_lfcdw', 'space-EPItemplate_desc-bold_mask', 'space-EPItemplate_res-derivative_desc-bold_mask', 'space-bold_desc-brain_mask', 'space-bold_desc-eroded_mask', 'space-bold_label-CSF_desc-eroded_mask', 'space-bold_label-CSF_mask', 'space-bold_label-GM_desc-eroded_mask', 'space-bold_label-GM_mask', 'space-bold_label-WM_desc-eroded_mask', 'space-bold_label-WM_mask', 'space-longitudinal_desc-brain_mask', 'space-longitudinal_label-CSF_desc-preproc_mask', 'space-longitudinal_label-CSF_mask', 'space-longitudinal_label-GM_desc-preproc_mask', 'space-longitudinal_label-GM_mask', 'space-longitudinal_label-WM_desc-preproc_mask', 'space-longitudinal_label-WM_mask', 'label-CSF_desc-eroded_mask', 'label-CSF_desc-preproc_mask', 'label-CSF_mask', 'label-GM_desc-eroded_mask', 'label-GM_desc-preproc_mask', 'label-GM_mask', 'label-WM_desc-eroded_mask', 'label-WM_desc-preproc_mask', 'label-WM_mask', 'space-T1w_desc-acpcbrain_mask', 'space-T1w_desc-brain_mask', 'space-T1w_desc-eroded_mask', 'space-template_desc-brain_mask', 'space-template_desc-bold_mask', 'space-template_res-derivative_desc-bold_mask', 'motion', 'desc-summary_motion', 'dvars', 'motion-filter-plot', 'desc-movementParameters_motion', 'desc-movementParametersUnfiltered_motion', 'label-CSF_probseg', 'label-GM_probseg', 'label-WM_probseg', 'desc-T1wAxial_quality', 'desc-T1wSagittal_quality', 'desc-dsegAxial_quality', 'desc-dsegSagittal_quality', 'desc-boldAxial_quality', 'desc-boldSagittal_quality', 'desc-boldCarpet_quality', 'desc-framewiseDisplacementJenkinsonPlot_quality', 'desc-movementParametersTrans_quality', 'desc-movementParametersRot_quality', 'desc-boldSnrAxial_quality', 'desc-boldSnrSagittal_quality', 'desc-boldSnrHist_quality', 'desc-boldSnr_quality', 'space-template_desc-xcp_quality', 'desc-confounds_timeseries', 'desc-sm_reho', 'desc-sm-zstd_reho', 'desc-zstd_reho', 'reho', 'space-template_desc-sm_reho', 'space-template_desc-sm-zstd_reho', 'space-template_desc-zstd_reho', 'space-template_reho', 'desc-DualReg_statmap', 'desc-MultReg_statmap', 'hemi-L_desc-surfaceMap_thickness', 'hemi-R_desc-surfaceMap_thickness', 'hemi-L_desc-surfaceMap_volume', 'hemi-R_desc-surfaceMap_volume', 'hemi-L_desc-surfaceMesh_pial', 'hemi-R_desc-surfaceMesh_pial', 'raw-average', 'hemi-L_desc-surfaceMesh_smoothwm', 'hemi-R_desc-surfaceMesh_smoothwm', 'atlas-DesikanKilliany_space-fsLR_den-32k_dlabel', 'atlas-Destrieux_space-fsLR_den-32k_dlabel', 'atlas-DesikanKilliany_space-fsLR_den-164k_dlabel', 'atlas-Destrieux_space-fsLR_den-164k_dlabel', 'space-fsLR_den-32k_bold-dtseries', 'hemi-L_desc-surfaceMesh_sphere', 'hemi-R_desc-surfaceMesh_sphere', 'hemi-L_desc-surfaceMap_sulc', 'hemi-R_desc-surfaceMap_sulc', 'hemi-L_desc-surface_curv', 'hemi-R_desc-surface_curv', 'hemi-L_desc-surfaceMesh_white', 'hemi-R_desc-surfaceMesh_white', 'wmparc', 'space-symtemplate_desc-brain_T1w', 'desc-brain_T1w', 'desc-head_T1w', 'desc-preproc_T1w', 'desc-reorient_T1w', 'desc-restore_T1w', 'desc-restore-brain_T1w', 'space-template_desc-brain_T1w', 'space-template_desc-preproc_T1w', 'space-template_desc-head_T1w', 'space-template_desc-T1w_mask', 'space-template_desc-Mean_timeseries', 'desc-MeanSCA_timeseries', 'desc-SpatReg_timeseries', 'desc-Voxel_timeseries', 'space-longitudinal_label-CSF_probseg', 'space-longitudinal_label-GM_probseg', 'space-longitudinal_label-WM_probseg', 'vmhc', 'blip-warp', 'from-bold_to-EPItemplate_mode-image_desc-linear_xfm', 'from-bold_to-EPItemplate_mode-image_desc-nonlinear_xfm', 'from-bold_to-EPItemplate_mode-image_xfm', 'from-bold_to-symtemplate_mode-image_xfm', 'from-bold_to-T1w_mode-image_desc-linear_xfm', 'from-bold_to-template_mode-image_xfm', 'from-EPItemplate_to-bold_mode-image_desc-linear_xfm', 'from-EPItemplate_to-bold_mode-image_desc-nonlinear_xfm', 'from-longitudinal_to-symtemplate_mode-image_desc-linear_xfm', 'from-longitudinal_to-symtemplate_mode-image_desc-nonlinear_xfm', 'from-longitudinal_to-symtemplate_mode-image_xfm', 'from-longitudinal_to-template_mode-image_desc-linear_xfm', 'from-longitudinal_to-template_mode-image_desc-nonlinear_xfm', 'from-longitudinal_to-template_mode-image_xfm', 'from-symtemplate_to-bold_mode-image_xfm', 'from-symtemplate_to-longitudinal_mode-image_desc-linear_xfm', 'from-symtemplate_to-longitudinal_mode-image_desc-nonlinear_xfm', 'from-symtemplate_to-longitudinal_mode-image_xfm', 'from-symtemplate_to-T1w_mode-image_desc-linear_xfm', 'from-symtemplate_to-T1w_mode-image_desc-nonlinear_xfm', 'from-symtemplate_to-T1w_mode-image_xfm', 'from-T1w_to-symtemplate_mode-image_desc-linear_xfm', 'from-T1w_to-symtemplate_mode-image_desc-nonlinear_xfm', 'from-T1w_to-symtemplate_mode-image_xfm', 'from-T1w_to-template_mode-image_desc-linear_xfm', 'from-T1w_to-template_mode-image_desc-nonlinear_xfm', 'from-T1w_to-template_mode-image_xfm', 'from-template_to-bold_mode-image_xfm', 'from-template_to-longitudinal_mode-image_desc-linear_xfm', 'from-template_to-longitudinal_mode-image_desc-nonlinear_xfm', 'from-template_to-longitudinal_mode-image_xfm', 'from-template_to-T1w_mode-image_desc-linear_xfm', 'from-template_to-T1w_mode-image_desc-nonlinear_xfm', 'from-template_to-T1w_mode-image_xfm', 'space-template_label-CSF_mask', 'space-template_label-WM_mask', 'space-template_label-GM_mask', 'space-EPItemplate_label-CSF_mask', 'space-EPItemplate_label-WM_mask', 'space-EPItemplate_label-GM_mask', 'mdmr', 'desc-zstd-mdmr', 'dseg', 'AtlasSubcortical-s2', 'space-fsLR_den-32k_bold', 'goodvoxels', 'ribbon-only', 'hemi-L_space-fsLR_den-32k_desc-atlasroi_bold', 'hemi-R_space-fsLR_den-32k_desc-atlasroi_bold', 'hemi-L_space-fsLR_den-32k_desc-atlasroi_mask', 'hemi-R_space-fsLR_den-32k_desc-atlasroi_mask', 'hemi-L_space-native_bold', 'hemi-R_space-native_bold', 'space-fsLR_den-32k_wb-spec', 'space-native_wb-spec', 'hemi-L_space-fsLR_den-32k_desc-FS_arealdistortion', 'hemi-R_space-fsLR_den-32k_desc-FS_arealdistortion', 'space-fsLR_den-32k_desc-FS_arealdistortion', 'hemi-L_space-fsLR_den-32k_desc-MSMSulc_arealdistortion', 'hemi-R_space-fsLR_den-32k_desc-MSMSulc_arealdistortion', 'space-fsLR_den-32k_desc-MSMSulc_arealdistortion', 'hemi-L_space-fsLR_den-32k_desc-FS_edgedistortion', 'hemi-R_space-fsLR_den-32k_desc-FS_edgedistortion', 'space-fsLR_den-32k_desc-FS_edgedistortion', 'hemi-L_space-fsLR_den-32k_desc-MSMSulc_edgedistortion', 'hemi-R_space-fsLR_den-32k_desc-MSMSulc_edgedistortion', 'space-fsLR_den-32k_desc-MSMSulc_edgedistortion', 'hemi-L_space-fsLR_den-32k_curv', 'hemi-R_space-fsLR_den-32k_curv', 'space-fsLR_den-32k_curv', 'hemi-L_space-fsLR_den-32k_flat', 'hemi-R_space-fsLR_den-32k_flat', 'hemi-L_space-fsLR_den-32k_inflated', 'hemi-R_space-fsLR_den-32k_inflated', 'hemi-L_space-fsLR_den-32k_veryinflated', 'hemi-R_space-fsLR_den-32k_veryinflated', 'hemi-L_space-native_inflated', 'hemi-R_space-native_inflated', 'hemi-L_space-native_veryinflated', 'hemi-R_space-native_veryinflated', 'hemi-L_space-fsLR_den-164k_midthickness', 'hemi-R_space-fsLR_den-164k_midthickness', 'hemi-L_space-fsLR_den-32k_midthickness', 'hemi-L_space-fsLR_den-32k_midthickness', 'hemi-L_space-native_midthickness', 'hemi-R_space-native_midthickness', 'hemi-L_space-fsLR_den-32k_pial', 'hemi-R_space-fsLR_den-32k_pial', 'hemi-L_space-native_den-32k_pial', 'hemi-R_space-native_den-32k_pial', 'hemi-L_space-fsLR_den-32k_sphere', 'hemi-R_space-fsLR_den-32k_sphere', 'hemi-L_space-native_desc-MSMSulc_sphere', 'hemi-R_space-native_desc-MSMSulc_sphere', 'hemi-L_space-native_sphere', 'hemi-R_space-native_sphere', 'hemi-L_space-native_desc-reg_sphere', 'hemi-R_space-native_desc-reg_sphere', 'hemi-L_space-native_desc-reg-reg_sphere', 'hemi-R_space-native_desc-reg-reg_sphere', 'hemi-L_space-native_desc-rot_sphere', 'hemi-R_space-native_desc-rot_sphere', 'hemi-L_space-fsLR_den-32k_desc-FS_strainJ', 'hemi-R_space-fsLR_den-32k_desc-FS_strainJ', 'space-fsLR_den-32k_desc-FS_strainJ', 'hemi-L_space-fsLR_den-32k_desc-MSMSulc_strainJ', 'hemi-R_space-fsLR_den-32k_desc-MSMSulc_strainJ', 'space-fsLR_den-32k_desc-MSMSulc_strainJ', 'hemi-L_space-fsLR_den-32k_desc-FS_strainR', 'hemi-R_space-fsLR_den-32k_desc-FS_strainR', 'space-fsLR_den-32k_desc-FS_strainR', 'hemi-L_space-fsLR_den-32k_desc-MSMSulc_strainR', 'hemi-R_space-fsLR_den-32k_desc-MSMSulc_strainR', 'space-fsLR_den-32k_desc-MSMSulc_strainR', 'hemi-L_space-fsLR_den-32k_sulc', 'hemi-R_space-fsLR_den-32k_sulc', 'space-fsLR_den-32k_sulc', 'hemi-L_space-fsLR_den-32k_thickness', 'hemi-R_space-fsLR_den-32k_thickness', 'space-fsLR_den-32k_thickness', 'hemi-L_space-fsLR_den-164k_white', 'hemi-R_space-fsLR_den-164k_white', 'hemi-L_space-fsLR_den-32k_white', 'hemi-R_space-fsLR_den-32k_white', 'hemi-L_space-native_white', 'hemi-R_space-native_white', 'atlas-DesikanKilliany_space-fsLR_den-32k', 'atlas-Destrieux_space-fsLR_den-32k', 'atlas-DesikanKilliany_space-fsLR_den-164k', 'atlas-Destrieux_space-fsLR_den-164k', 'space-fsLR_den-32k_bold_surf_falff', 'space-fsLR_den-32k_bold_surf_alff', 'space-fsLR_den-32k_bold_surf-L_reho', 'space-fsLR_den-32k_bold_surf-R_reho', 'space-fsLR_den-32k_bold_surf-correlation_matrix']¶
- bold_ts = ['desc-brain_bold', 'desc-motion_bold', 'desc-preproc_bold', 'desc-sm_bold']¶
- ciftis = {'atlas-DesikanKilliany_space-fsLR_den-164k': 'dlabel', 'atlas-DesikanKilliany_space-fsLR_den-32k': 'dlabel', 'atlas-Destrieux_space-fsLR_den-164k': 'dlabel', 'atlas-Destrieux_space-fsLR_den-32k': 'dlabel', 'space-fsLR_den-32k_bold': 'dtseries', 'space-fsLR_den-32k_bold_surf-L_reho': 'dscalar', 'space-fsLR_den-32k_bold_surf-R_reho': 'dscalar', 'space-fsLR_den-32k_bold_surf-correlation_matrix': 'pconn', 'space-fsLR_den-32k_bold_surf_alff': 'dscalar', 'space-fsLR_den-32k_bold_surf_falff': 'dscalar', 'space-fsLR_den-32k_curv': 'dscalar', 'space-fsLR_den-32k_desc-FS_arealdistortion': 'dscalar', 'space-fsLR_den-32k_desc-FS_edgedistortion': 'dscalar', 'space-fsLR_den-32k_desc-FS_strainJ': 'dscalar', 'space-fsLR_den-32k_desc-FS_strainR': 'dscalar', 'space-fsLR_den-32k_desc-MSMSulc_arealdistortion': 'dscalar', 'space-fsLR_den-32k_desc-MSMSulc_edgedistortion': 'dscalar', 'space-fsLR_den-32k_desc-MSMSulc_strainJ': 'dscalar', 'space-fsLR_den-32k_desc-MSMSulc_strainR': 'dscalar', 'space-fsLR_den-32k_sulc': 'dscalar', 'space-fsLR_den-32k_thickness': 'dscalar'}¶
- debugging = ['desc-brain_bold', 'desc-motion_bold', 'desc-sm_bold', 'space-EPItemplate_desc-brain_bold', 'space-symtemplate_desc-sm_bold', 'space-template_desc-brain_bold', 'dvars', 'space-symtemplate_desc-brain_T1w', 'desc-brain_T1w', 'desc-reorient_T1w', 'space-template_desc-brain_T1w']¶
- func = ['alff', 'desc-sm_alff', 'desc-sm-zstd_alff', 'desc-zstd_alff', 'space-template_alff', 'space-template_desc-sm_alff', 'space-template_desc-sm-zstd_alff', 'space-template_desc-zstd_alff', 'desc-brain_bold', 'desc-mean_bold', 'desc-motion_bold', 'desc-preproc_bold', 'desc-sm_bold', 'sbref', 'space-EPItemplate_bold', 'space-EPItemplate_desc-brain_bold', 'space-EPItemplate_desc-mean_bold', 'space-EPItemplate_desc-preproc_bold', 'space-symtemplate_desc-sm_bold', 'space-T1w_sbref', 'space-template_bold', 'space-template_desc-brain_bold', 'space-template_desc-head_bold', 'space-template_desc-mean_bold', 'space-template_desc-preproc_bold', 'space-template_desc-scout_bold', 'space-template_sbref', 'space-template_desc-DualReg_correlations', 'space-template_desc-MeanSCA_correlations', 'space-template_desc-MultReg_correlations', 'space-template_desc-ndmg_correlations', 'space-template_desc-PearsonAfni_correlations', 'space-template_desc-PartialAfni_correlations', 'space-template_desc-PearsonNilearn_correlations', 'space-template_desc-PartialNilearn_correlations', 'space-template_dcb', 'space-template_desc-sm_dcb', 'space-template_desc-sm-zstd_dcb', 'space-template_desc-zstd_dcb', 'space-template_dcw', 'space-template_desc-sm_dcw', 'space-template_desc-sm-zstd_dcw', 'space-template_desc-zstd_dcw', 'space-template_ecb', 'space-template_desc-sm_ecb', 'space-template_desc-sm-zstd_ecb', 'space-template_desc-zstd_ecb', 'space-template_ecw', 'space-template_desc-sm_ecw', 'space-template_desc-sm-zstd_ecw', 'space-template_desc-zstd_ecw', 'desc-sm_falff', 'desc-sm-zstd_falff', 'desc-zstd_falff', 'falff', 'space-template_desc-sm_falff', 'space-template_desc-sm-zstd_falff', 'space-template_desc-zstd_falff', 'space-template_falff', 'space-template_lfcdb', 'space-template_desc-sm_lfcdb', 'space-template_desc-sm-zstd_lfcdb', 'space-template_desc-zstd_lfcdb', 'space-template_lfcdw', 'space-template_desc-sm_lfcdw', 'space-template_desc-sm-zstd_lfcdw', 'space-template_desc-zstd_lfcdw', 'space-EPItemplate_desc-bold_mask', 'space-EPItemplate_res-derivative_desc-bold_mask', 'space-bold_desc-brain_mask', 'space-bold_desc-eroded_mask', 'space-bold_label-CSF_desc-eroded_mask', 'space-bold_label-CSF_mask', 'space-bold_label-GM_desc-eroded_mask', 'space-bold_label-GM_mask', 'space-bold_label-WM_desc-eroded_mask', 'space-bold_label-WM_mask', 'space-template_desc-bold_mask', 'space-template_res-derivative_desc-bold_mask', 'motion', 'desc-summary_motion', 'dvars', 'motion-filter-plot', 'desc-movementParameters_motion', 'desc-movementParametersUnfiltered_motion', 'desc-boldAxial_quality', 'desc-boldSagittal_quality', 'desc-boldCarpet_quality', 'desc-framewiseDisplacementJenkinsonPlot_quality', 'desc-movementParametersTrans_quality', 'desc-movementParametersRot_quality', 'desc-boldSnrAxial_quality', 'desc-boldSnrSagittal_quality', 'desc-boldSnrHist_quality', 'desc-boldSnr_quality', 'space-template_desc-xcp_quality', 'desc-confounds_timeseries', 'desc-sm_reho', 'desc-sm-zstd_reho', 'desc-zstd_reho', 'reho', 'space-template_desc-sm_reho', 'space-template_desc-sm-zstd_reho', 'space-template_desc-zstd_reho', 'space-template_reho', 'desc-DualReg_statmap', 'desc-MultReg_statmap', 'space-fsLR_den-32k_bold-dtseries', 'space-template_desc-Mean_timeseries', 'desc-MeanSCA_timeseries', 'desc-SpatReg_timeseries', 'desc-Voxel_timeseries', 'vmhc', 'blip-warp', 'from-bold_to-EPItemplate_mode-image_desc-linear_xfm', 'from-bold_to-EPItemplate_mode-image_desc-nonlinear_xfm', 'from-bold_to-EPItemplate_mode-image_xfm', 'from-bold_to-symtemplate_mode-image_xfm', 'from-bold_to-T1w_mode-image_desc-linear_xfm', 'from-bold_to-template_mode-image_xfm', 'from-EPItemplate_to-bold_mode-image_desc-linear_xfm', 'from-EPItemplate_to-bold_mode-image_desc-nonlinear_xfm', 'from-symtemplate_to-bold_mode-image_xfm', 'from-template_to-bold_mode-image_xfm', 'space-EPItemplate_label-CSF_mask', 'space-EPItemplate_label-WM_mask', 'space-EPItemplate_label-GM_mask', 'AtlasSubcortical-s2', 'space-fsLR_den-32k_bold', 'goodvoxels', 'ribbon-only', 'hemi-R_space-fsLR_den-32k_desc-atlasroi_bold', 'hemi-L_space-fsLR_den-32k_desc-atlasroi_mask', 'hemi-R_space-fsLR_den-32k_desc-atlasroi_mask', 'hemi-L_space-native_bold', 'hemi-R_space-native_bold', 'space-fsLR_den-32k_wb-spec', 'space-native_wb-spec', 'hemi-L_space-fsLR_den-32k_desc-FS_arealdistortion', 'hemi-R_space-fsLR_den-32k_desc-FS_arealdistortion', 'space-fsLR_den-32k_desc-FS_arealdistortion', 'hemi-L_space-fsLR_den-32k_desc-MSMSulc_arealdistortion', 'hemi-R_space-fsLR_den-32k_desc-MSMSulc_arealdistortion', 'space-fsLR_den-32k_desc-MSMSulc_arealdistortion', 'hemi-L_space-fsLR_den-32k_desc-FS_edgedistortion', 'hemi-R_space-fsLR_den-32k_desc-FS_edgedistortion', 'space-fsLR_den-32k_desc-FS_edgedistortion', 'hemi-L_space-fsLR_den-32k_desc-MSMSulc_edgedistortion', 'hemi-R_space-fsLR_den-32k_desc-MSMSulc_edgedistortion', 'space-fsLR_den-32k_desc-MSMSulc_edgedistortion', 'hemi-L_space-fsLR_den-32k_curv', 'hemi-R_space-fsLR_den-32k_curv', 'space-fsLR_den-32k_curv', 'hemi-L_space-fsLR_den-32k_flat', 'hemi-R_space-fsLR_den-32k_flat', 'hemi-L_space-fsLR_den-32k_inflated', 'hemi-R_space-fsLR_den-32k_inflated', 'hemi-L_space-fsLR_den-32k_veryinflated', 'hemi-R_space-fsLR_den-32k_veryinflated', 'hemi-L_space-native_inflated', 'hemi-R_space-native_inflated', 'hemi-L_space-native_veryinflated', 'hemi-R_space-native_veryinflated', 'hemi-L_space-fsLR_den-164k_midthickness', 'hemi-R_space-fsLR_den-164k_midthickness', 'hemi-L_space-fsLR_den-32k_midthickness', 'hemi-L_space-fsLR_den-32k_midthickness', 'hemi-L_space-native_midthickness', 'hemi-R_space-native_midthickness', 'hemi-L_space-fsLR_den-32k_pial', 'hemi-R_space-fsLR_den-32k_pial', 'hemi-L_space-native_den-32k_pial', 'hemi-R_space-native_den-32k_pial', 'hemi-L_space-fsLR_den-32k_sphere', 'hemi-R_space-fsLR_den-32k_sphere', 'hemi-L_space-native_desc-MSMSulc_sphere', 'hemi-R_space-native_desc-MSMSulc_sphere', 'hemi-L_space-native_sphere', 'hemi-R_space-native_sphere', 'hemi-L_space-native_desc-reg_sphere', 'hemi-R_space-native_desc-reg_sphere', 'hemi-L_space-native_desc-reg-reg_sphere', 'hemi-R_space-native_desc-reg-reg_sphere', 'hemi-L_space-native_desc-rot_sphere', 'hemi-R_space-native_desc-rot_sphere', 'hemi-L_space-fsLR_den-32k_desc-FS_strainJ', 'hemi-R_space-fsLR_den-32k_desc-FS_strainJ', 'space-fsLR_den-32k_desc-FS_strainJ', 'hemi-L_space-fsLR_den-32k_desc-MSMSulc_strainJ', 'hemi-R_space-fsLR_den-32k_desc-MSMSulc_strainJ', 'space-fsLR_den-32k_desc-MSMSulc_strainJ', 'hemi-L_space-fsLR_den-32k_desc-FS_strainR', 'hemi-R_space-fsLR_den-32k_desc-FS_strainR', 'space-fsLR_den-32k_desc-FS_strainR', 'hemi-L_space-fsLR_den-32k_desc-MSMSulc_strainR', 'hemi-R_space-fsLR_den-32k_desc-MSMSulc_strainR', 'space-fsLR_den-32k_desc-MSMSulc_strainR', 'hemi-L_space-fsLR_den-32k_sulc', 'hemi-R_space-fsLR_den-32k_sulc', 'space-fsLR_den-32k_sulc', 'hemi-L_space-fsLR_den-32k_thickness', 'hemi-R_space-fsLR_den-32k_thickness', 'space-fsLR_den-32k_thickness', 'hemi-L_space-fsLR_den-164k_white', 'hemi-R_space-fsLR_den-164k_white', 'hemi-L_space-fsLR_den-32k_white', 'hemi-R_space-fsLR_den-32k_white', 'hemi-L_space-native_white', 'hemi-R_space-native_white', 'atlas-DesikanKilliany_space-fsLR_den-32k', 'atlas-Destrieux_space-fsLR_den-32k', 'atlas-DesikanKilliany_space-fsLR_den-164k', 'atlas-Destrieux_space-fsLR_den-164k', 'space-fsLR_den-32k_bold_surf_falff', 'space-fsLR_den-32k_bold_surf_alff', 'space-fsLR_den-32k_bold_surf-L_reho', 'space-fsLR_den-32k_bold_surf-R_reho', 'space-fsLR_den-32k_bold_surf-correlation_matrix']¶
- functional_timeseries = ['desc-brain_bold', 'desc-motion_bold', 'desc-preproc_bold', 'desc-sm_bold', 'space-EPItemplate_bold', 'space-EPItemplate_desc-brain_bold', 'space-EPItemplate_desc-preproc_bold', 'space-symtemplate_desc-sm_bold', 'space-template_bold', 'space-template_desc-brain_bold', 'space-template_desc-head_bold', 'space-template_desc-preproc_bold']¶
- giftis = {'hemi-L_space-fsLR_den-164k_midthickness': 'surf', 'hemi-L_space-fsLR_den-164k_white': 'surf', 'hemi-L_space-fsLR_den-32k_curv': 'shape', 'hemi-L_space-fsLR_den-32k_desc-FS_arealdistortion': 'shape', 'hemi-L_space-fsLR_den-32k_desc-FS_edgedistortion': 'shape', 'hemi-L_space-fsLR_den-32k_desc-FS_strainJ': 'shape', 'hemi-L_space-fsLR_den-32k_desc-FS_strainR': 'shape', 'hemi-L_space-fsLR_den-32k_desc-MSMSulc_arealdistortion': 'shape', 'hemi-L_space-fsLR_den-32k_desc-MSMSulc_edgedistortion': 'shape', 'hemi-L_space-fsLR_den-32k_desc-MSMSulc_strainJ': 'shape', 'hemi-L_space-fsLR_den-32k_desc-MSMSulc_strainR': 'shape', 'hemi-L_space-fsLR_den-32k_desc-atlasroi_bold': 'func', 'hemi-L_space-fsLR_den-32k_desc-atlasroi_mask': 'shape', 'hemi-L_space-fsLR_den-32k_flat': 'surf', 'hemi-L_space-fsLR_den-32k_inflated': 'surf', 'hemi-L_space-fsLR_den-32k_midthickness': 'surf', 'hemi-L_space-fsLR_den-32k_pial': 'surf', 'hemi-L_space-fsLR_den-32k_sphere': 'surf', 'hemi-L_space-fsLR_den-32k_sulc': 'shape', 'hemi-L_space-fsLR_den-32k_thickness': 'shape', 'hemi-L_space-fsLR_den-32k_veryinflated': 'surf', 'hemi-L_space-fsLR_den-32k_white': 'surf', 'hemi-L_space-native_bold': 'func', 'hemi-L_space-native_den-32k_pial': 'surf', 'hemi-L_space-native_desc-MSMSulc_sphere': 'surf', 'hemi-L_space-native_desc-reg-reg_sphere': 'surf', 'hemi-L_space-native_desc-reg_sphere': 'surf', 'hemi-L_space-native_desc-rot_sphere': 'surf', 'hemi-L_space-native_inflated': 'surf', 'hemi-L_space-native_midthickness': 'surf', 'hemi-L_space-native_sphere': 'surf', 'hemi-L_space-native_veryinflated': 'surf', 'hemi-L_space-native_white': 'surf', 'hemi-R_space-fsLR_den-164k_midthickness': 'surf', 'hemi-R_space-fsLR_den-164k_white': 'surf', 'hemi-R_space-fsLR_den-32k_curv': 'shape', 'hemi-R_space-fsLR_den-32k_desc-FS_arealdistortion': 'shape', 'hemi-R_space-fsLR_den-32k_desc-FS_edgedistortion': 'shape', 'hemi-R_space-fsLR_den-32k_desc-FS_strainJ': 'shape', 'hemi-R_space-fsLR_den-32k_desc-FS_strainR': 'shape', 'hemi-R_space-fsLR_den-32k_desc-MSMSulc_arealdistortion': 'shape', 'hemi-R_space-fsLR_den-32k_desc-MSMSulc_edgedistortion': 'shape', 'hemi-R_space-fsLR_den-32k_desc-MSMSulc_strainJ': 'shape', 'hemi-R_space-fsLR_den-32k_desc-MSMSulc_strainR': 'shape', 'hemi-R_space-fsLR_den-32k_desc-atlasroi_bold': 'func', 'hemi-R_space-fsLR_den-32k_desc-atlasroi_mask': 'shape', 'hemi-R_space-fsLR_den-32k_flat': 'surf', 'hemi-R_space-fsLR_den-32k_inflated': 'surf', 'hemi-R_space-fsLR_den-32k_pial': 'surf', 'hemi-R_space-fsLR_den-32k_sphere': 'surf', 'hemi-R_space-fsLR_den-32k_sulc': 'shape', 'hemi-R_space-fsLR_den-32k_thickness': 'shape', 'hemi-R_space-fsLR_den-32k_veryinflated': 'surf', 'hemi-R_space-fsLR_den-32k_white': 'surf', 'hemi-R_space-native_bold': 'func', 'hemi-R_space-native_den-32k_pial': 'surf', 'hemi-R_space-native_desc-MSMSulc_sphere': 'surf', 'hemi-R_space-native_desc-reg-reg_sphere': 'surf', 'hemi-R_space-native_desc-reg_sphere': 'surf', 'hemi-R_space-native_desc-rot_sphere': 'surf', 'hemi-R_space-native_inflated': 'surf', 'hemi-R_space-native_midthickness': 'surf', 'hemi-R_space-native_sphere': 'surf', 'hemi-R_space-native_veryinflated': 'surf', 'hemi-R_space-native_white': 'surf', 'space-fsLR_den-32k_wb-spec': 'spec', 'space-native_wb-spec': 'spec'}¶
- native_nonsmooth = ['alff', 'falff', 'reho']¶
- native_raw = ['alff', 'desc-sm_alff', 'desc-sm_falff', 'falff', 'desc-sm_reho', 'reho', 'desc-zstd-mdmr']¶
- native_smooth = ['desc-sm_alff', 'desc-sm-zstd_alff', 'desc-zstd_alff', 'desc-brain_bold', 'desc-mean_bold', 'desc-motion_bold', 'desc-preproc_bold', 'desc-sm_bold', 'sbref', 'space-T1w_sbref', 'desc-sm_falff', 'desc-sm-zstd_falff', 'desc-zstd_falff', 'space-bold_desc-brain_mask', 'space-bold_desc-eroded_mask', 'space-bold_label-CSF_desc-eroded_mask', 'space-bold_label-CSF_mask', 'space-bold_label-GM_desc-eroded_mask', 'space-bold_label-GM_mask', 'space-bold_label-WM_desc-eroded_mask', 'space-bold_label-WM_mask', 'space-longitudinal_desc-brain_mask', 'space-longitudinal_label-CSF_desc-preproc_mask', 'space-longitudinal_label-CSF_mask', 'space-longitudinal_label-GM_desc-preproc_mask', 'space-longitudinal_label-GM_mask', 'space-longitudinal_label-WM_desc-preproc_mask', 'space-longitudinal_label-WM_mask', 'label-CSF_desc-eroded_mask', 'label-CSF_desc-preproc_mask', 'label-CSF_mask', 'label-GM_desc-eroded_mask', 'label-GM_desc-preproc_mask', 'label-GM_mask', 'label-WM_desc-eroded_mask', 'label-WM_desc-preproc_mask', 'label-WM_mask', 'space-T1w_desc-acpcbrain_mask', 'space-T1w_desc-brain_mask', 'space-T1w_desc-eroded_mask', 'motion', 'desc-summary_motion', 'dvars', 'motion-filter-plot', 'desc-movementParameters_motion', 'desc-movementParametersUnfiltered_motion', 'label-CSF_probseg', 'label-GM_probseg', 'label-WM_probseg', 'desc-T1wAxial_quality', 'desc-T1wSagittal_quality', 'desc-dsegAxial_quality', 'desc-dsegSagittal_quality', 'desc-boldAxial_quality', 'desc-boldSagittal_quality', 'desc-boldCarpet_quality', 'desc-framewiseDisplacementJenkinsonPlot_quality', 'desc-movementParametersTrans_quality', 'desc-movementParametersRot_quality', 'desc-boldSnrAxial_quality', 'desc-boldSnrSagittal_quality', 'desc-boldSnrHist_quality', 'desc-boldSnr_quality', 'space-template_desc-xcp_quality', 'desc-confounds_timeseries', 'desc-sm_reho', 'desc-sm-zstd_reho', 'desc-zstd_reho', 'hemi-L_desc-surfaceMap_thickness', 'hemi-R_desc-surfaceMap_thickness', 'hemi-L_desc-surfaceMap_volume', 'hemi-R_desc-surfaceMap_volume', 'hemi-L_desc-surfaceMesh_pial', 'hemi-R_desc-surfaceMesh_pial', 'raw-average', 'hemi-L_desc-surfaceMesh_smoothwm', 'hemi-R_desc-surfaceMesh_smoothwm', 'atlas-DesikanKilliany_space-fsLR_den-32k_dlabel', 'atlas-Destrieux_space-fsLR_den-32k_dlabel', 'atlas-DesikanKilliany_space-fsLR_den-164k_dlabel', 'atlas-Destrieux_space-fsLR_den-164k_dlabel', 'space-fsLR_den-32k_bold-dtseries', 'hemi-L_desc-surfaceMesh_sphere', 'hemi-R_desc-surfaceMesh_sphere', 'hemi-L_desc-surfaceMap_sulc', 'hemi-R_desc-surfaceMap_sulc', 'hemi-L_desc-surface_curv', 'hemi-R_desc-surface_curv', 'hemi-L_desc-surfaceMesh_white', 'hemi-R_desc-surfaceMesh_white', 'wmparc', 'desc-brain_T1w', 'desc-head_T1w', 'desc-preproc_T1w', 'desc-reorient_T1w', 'desc-restore_T1w', 'desc-restore-brain_T1w', 'space-template_desc-Mean_timeseries', 'desc-MeanSCA_timeseries', 'desc-SpatReg_timeseries', 'desc-Voxel_timeseries', 'space-longitudinal_label-CSF_probseg', 'space-longitudinal_label-GM_probseg', 'space-longitudinal_label-WM_probseg', 'blip-warp', 'from-bold_to-EPItemplate_mode-image_desc-linear_xfm', 'from-bold_to-EPItemplate_mode-image_desc-nonlinear_xfm', 'from-bold_to-EPItemplate_mode-image_xfm', 'from-bold_to-symtemplate_mode-image_xfm', 'from-bold_to-T1w_mode-image_desc-linear_xfm', 'from-bold_to-template_mode-image_xfm', 'from-EPItemplate_to-bold_mode-image_desc-linear_xfm', 'from-EPItemplate_to-bold_mode-image_desc-nonlinear_xfm', 'from-longitudinal_to-symtemplate_mode-image_desc-linear_xfm', 'from-longitudinal_to-symtemplate_mode-image_desc-nonlinear_xfm', 'from-longitudinal_to-symtemplate_mode-image_xfm', 'from-longitudinal_to-template_mode-image_desc-linear_xfm', 'from-longitudinal_to-template_mode-image_desc-nonlinear_xfm', 'from-longitudinal_to-template_mode-image_xfm', 'from-symtemplate_to-bold_mode-image_xfm', 'from-symtemplate_to-longitudinal_mode-image_desc-linear_xfm', 'from-symtemplate_to-longitudinal_mode-image_desc-nonlinear_xfm', 'from-symtemplate_to-longitudinal_mode-image_xfm', 'from-symtemplate_to-T1w_mode-image_desc-linear_xfm', 'from-symtemplate_to-T1w_mode-image_desc-nonlinear_xfm', 'from-symtemplate_to-T1w_mode-image_xfm', 'from-T1w_to-symtemplate_mode-image_desc-linear_xfm', 'from-T1w_to-symtemplate_mode-image_desc-nonlinear_xfm', 'from-T1w_to-symtemplate_mode-image_xfm', 'from-T1w_to-template_mode-image_desc-linear_xfm', 'from-T1w_to-template_mode-image_desc-nonlinear_xfm', 'from-T1w_to-template_mode-image_xfm', 'from-template_to-bold_mode-image_xfm', 'from-template_to-longitudinal_mode-image_desc-linear_xfm', 'from-template_to-longitudinal_mode-image_desc-nonlinear_xfm', 'from-template_to-longitudinal_mode-image_xfm', 'from-template_to-T1w_mode-image_desc-linear_xfm', 'from-template_to-T1w_mode-image_desc-nonlinear_xfm', 'from-template_to-T1w_mode-image_xfm', 'mdmr', 'desc-zstd-mdmr', 'dseg', 'AtlasSubcortical-s2', 'space-fsLR_den-32k_bold', 'goodvoxels', 'ribbon-only', 'hemi-L_space-fsLR_den-32k_desc-atlasroi_bold', 'hemi-R_space-fsLR_den-32k_desc-atlasroi_bold', 'hemi-L_space-fsLR_den-32k_desc-atlasroi_mask', 'hemi-R_space-fsLR_den-32k_desc-atlasroi_mask', 'hemi-L_space-native_bold', 'hemi-R_space-native_bold', 'space-fsLR_den-32k_wb-spec', 'space-native_wb-spec', 'hemi-L_space-fsLR_den-32k_desc-FS_arealdistortion', 'hemi-R_space-fsLR_den-32k_desc-FS_arealdistortion', 'space-fsLR_den-32k_desc-FS_arealdistortion', 'hemi-L_space-fsLR_den-32k_desc-MSMSulc_arealdistortion', 'hemi-R_space-fsLR_den-32k_desc-MSMSulc_arealdistortion', 'space-fsLR_den-32k_desc-MSMSulc_arealdistortion', 'hemi-L_space-fsLR_den-32k_desc-FS_edgedistortion', 'hemi-R_space-fsLR_den-32k_desc-FS_edgedistortion', 'space-fsLR_den-32k_desc-FS_edgedistortion', 'hemi-L_space-fsLR_den-32k_desc-MSMSulc_edgedistortion', 'hemi-R_space-fsLR_den-32k_desc-MSMSulc_edgedistortion', 'space-fsLR_den-32k_desc-MSMSulc_edgedistortion', 'hemi-L_space-fsLR_den-32k_curv', 'hemi-R_space-fsLR_den-32k_curv', 'space-fsLR_den-32k_curv', 'hemi-L_space-fsLR_den-32k_flat', 'hemi-R_space-fsLR_den-32k_flat', 'hemi-L_space-fsLR_den-32k_inflated', 'hemi-R_space-fsLR_den-32k_inflated', 'hemi-L_space-fsLR_den-32k_veryinflated', 'hemi-R_space-fsLR_den-32k_veryinflated', 'hemi-L_space-native_inflated', 'hemi-R_space-native_inflated', 'hemi-L_space-native_veryinflated', 'hemi-R_space-native_veryinflated', 'hemi-L_space-fsLR_den-164k_midthickness', 'hemi-R_space-fsLR_den-164k_midthickness', 'hemi-L_space-fsLR_den-32k_midthickness', 'hemi-L_space-fsLR_den-32k_midthickness', 'hemi-L_space-native_midthickness', 'hemi-R_space-native_midthickness', 'hemi-L_space-fsLR_den-32k_pial', 'hemi-R_space-fsLR_den-32k_pial', 'hemi-L_space-native_den-32k_pial', 'hemi-R_space-native_den-32k_pial', 'hemi-L_space-fsLR_den-32k_sphere', 'hemi-R_space-fsLR_den-32k_sphere', 'hemi-L_space-native_desc-MSMSulc_sphere', 'hemi-R_space-native_desc-MSMSulc_sphere', 'hemi-L_space-native_sphere', 'hemi-R_space-native_sphere', 'hemi-L_space-native_desc-reg_sphere', 'hemi-R_space-native_desc-reg_sphere', 'hemi-L_space-native_desc-reg-reg_sphere', 'hemi-R_space-native_desc-reg-reg_sphere', 'hemi-L_space-native_desc-rot_sphere', 'hemi-R_space-native_desc-rot_sphere', 'hemi-L_space-fsLR_den-32k_desc-FS_strainJ', 'hemi-R_space-fsLR_den-32k_desc-FS_strainJ', 'space-fsLR_den-32k_desc-FS_strainJ', 'hemi-L_space-fsLR_den-32k_desc-MSMSulc_strainJ', 'hemi-R_space-fsLR_den-32k_desc-MSMSulc_strainJ', 'space-fsLR_den-32k_desc-MSMSulc_strainJ', 'hemi-L_space-fsLR_den-32k_desc-FS_strainR', 'hemi-R_space-fsLR_den-32k_desc-FS_strainR', 'space-fsLR_den-32k_desc-FS_strainR', 'hemi-L_space-fsLR_den-32k_desc-MSMSulc_strainR', 'hemi-R_space-fsLR_den-32k_desc-MSMSulc_strainR', 'space-fsLR_den-32k_desc-MSMSulc_strainR', 'hemi-L_space-fsLR_den-32k_sulc', 'hemi-R_space-fsLR_den-32k_sulc', 'space-fsLR_den-32k_sulc', 'hemi-L_space-fsLR_den-32k_thickness', 'hemi-R_space-fsLR_den-32k_thickness', 'space-fsLR_den-32k_thickness', 'hemi-L_space-fsLR_den-164k_white', 'hemi-R_space-fsLR_den-164k_white', 'hemi-L_space-fsLR_den-32k_white', 'hemi-R_space-fsLR_den-32k_white', 'hemi-L_space-native_white', 'hemi-R_space-native_white', 'atlas-DesikanKilliany_space-fsLR_den-32k', 'atlas-Destrieux_space-fsLR_den-32k', 'atlas-DesikanKilliany_space-fsLR_den-164k', 'atlas-Destrieux_space-fsLR_den-164k', 'space-fsLR_den-32k_bold_surf_falff', 'space-fsLR_den-32k_bold_surf_alff', 'space-fsLR_den-32k_bold_surf-L_reho', 'space-fsLR_den-32k_bold_surf-R_reho', 'space-fsLR_den-32k_bold_surf-correlation_matrix']¶
- reference = Resource ... Multi-File 0 alff ... 1 desc-sm_alff ... 2 desc-sm-zstd_alff ... 3 desc-zstd_alff ... 4 space-template_alff ... .. ... ... ... 307 space-fsLR_den-32k_bold_surf_falff ... 308 space-fsLR_den-32k_bold_surf_alff ... 309 space-fsLR_den-32k_bold_surf-L_reho ... 310 space-fsLR_den-32k_bold_surf-R_reho ... 311 space-fsLR_den-32k_bold_surf-correlation_matrix ... [312 rows x 10 columns]¶
- reference_csv = '/home/circleci/docs_env/lib/python3.10/site-packages/CPAC/resources/cpac_outputs.tsv'¶
- template_nonsmooth = ['space-template_alff', 'space-template_dcb', 'space-template_dcw', 'space-template_ecb', 'space-template_ecw', 'space-template_falff', 'space-template_lfcdb', 'space-template_lfcdw', 'space-template_reho']¶
- template_raw = ['space-template_alff', 'space-template_desc-sm_alff', 'space-template_dcb', 'space-template_desc-sm_dcb', 'space-template_dcw', 'space-template_desc-sm_dcw', 'space-template_ecb', 'space-template_desc-sm_ecb', 'space-template_ecw', 'space-template_desc-sm_ecw', 'space-template_desc-sm_falff', 'space-template_falff', 'space-template_lfcdb', 'space-template_desc-sm_lfcdb', 'space-template_lfcdw', 'space-template_desc-sm_lfcdw', 'space-template_desc-sm_reho', 'space-template_reho']¶
- template_smooth = ['space-template_desc-sm_alff', 'space-template_desc-sm-zstd_alff', 'space-template_desc-zstd_alff', 'space-EPItemplate_bold', 'space-EPItemplate_desc-brain_bold', 'space-EPItemplate_desc-mean_bold', 'space-EPItemplate_desc-preproc_bold', 'space-symtemplate_desc-sm_bold', 'space-template_bold', 'space-template_desc-brain_bold', 'space-template_desc-head_bold', 'space-template_desc-mean_bold', 'space-template_desc-preproc_bold', 'space-template_desc-scout_bold', 'space-template_sbref', 'space-template_desc-DualReg_correlations', 'space-template_desc-MeanSCA_correlations', 'space-template_desc-MultReg_correlations', 'space-template_desc-ndmg_correlations', 'space-template_desc-PearsonAfni_correlations', 'space-template_desc-PartialAfni_correlations', 'space-template_desc-PearsonNilearn_correlations', 'space-template_desc-PartialNilearn_correlations', 'space-template_desc-sm_dcb', 'space-template_desc-sm-zstd_dcb', 'space-template_desc-zstd_dcb', 'space-template_desc-sm_dcw', 'space-template_desc-sm-zstd_dcw', 'space-template_desc-zstd_dcw', 'space-template_desc-sm_ecb', 'space-template_desc-sm-zstd_ecb', 'space-template_desc-zstd_ecb', 'space-template_desc-sm_ecw', 'space-template_desc-sm-zstd_ecw', 'space-template_desc-zstd_ecw', 'space-template_desc-sm_falff', 'space-template_desc-sm-zstd_falff', 'space-template_desc-zstd_falff', 'space-template_desc-sm_lfcdb', 'space-template_desc-sm-zstd_lfcdb', 'space-template_desc-zstd_lfcdb', 'space-template_desc-sm_lfcdw', 'space-template_desc-sm-zstd_lfcdw', 'space-template_desc-zstd_lfcdw', 'space-EPItemplate_desc-bold_mask', 'space-EPItemplate_res-derivative_desc-bold_mask', 'space-template_desc-brain_mask', 'space-template_desc-bold_mask', 'space-template_res-derivative_desc-bold_mask', 'space-template_desc-sm_reho', 'space-template_desc-sm-zstd_reho', 'space-template_desc-zstd_reho', 'desc-DualReg_statmap', 'desc-MultReg_statmap', 'space-symtemplate_desc-brain_T1w', 'space-template_desc-brain_T1w', 'space-template_desc-preproc_T1w', 'space-template_desc-head_T1w', 'space-template_desc-T1w_mask', 'vmhc', 'space-template_label-CSF_mask', 'space-template_label-WM_mask', 'space-template_label-GM_mask', 'space-EPItemplate_label-CSF_mask', 'space-EPItemplate_label-WM_mask', 'space-EPItemplate_label-GM_mask']¶
- to_fisherz = []¶
- to_smooth = ['alff', 'space-template_alff', 'space-template_dcb', 'space-template_dcw', 'space-template_ecb', 'space-template_ecw', 'falff', 'space-template_falff', 'space-template_lfcdb', 'space-template_lfcdw', 'reho', 'space-template_reho']¶
- to_zstd = ['alff', 'desc-sm_alff', 'space-template_alff', 'space-template_desc-sm_alff', 'space-template_dcb', 'space-template_desc-sm_dcb', 'space-template_dcw', 'space-template_desc-sm_dcw', 'space-template_ecb', 'space-template_desc-sm_ecb', 'space-template_ecw', 'space-template_desc-sm_ecw', 'desc-sm_falff', 'falff', 'space-template_desc-sm_falff', 'space-template_falff', 'space-template_lfcdb', 'space-template_desc-sm_lfcdb', 'space-template_lfcdw', 'space-template_desc-sm_lfcdw', 'desc-sm_reho', 'reho', 'space-template_desc-sm_reho', 'space-template_reho', 'desc-zstd-mdmr']¶
pytest¶
Utilities for Pytest integration.
Serialization¶
Strategy¶
Symlinks¶
Test Initialization¶
Assist in initializing CPAC tests resources.
- CPAC.utils.test_init.concordance(x, y)[source]¶
Return the concordance correlation coefficient as defined by Lin (1989).
- CPAC.utils.test_init.create_dummy_node(name: str, fields: list[str] | None = None)[source]¶
Create a dummy IdentityInterface source for upstream resources.
- CPAC.utils.test_init.default_bucket_name()[source]¶
Return the default S3 bucket name used in test suite.
- Parameters:
None
- Returns:
bucket_name – default S3 bucket name for testing
- Return type:
string
- CPAC.utils.test_init.download_cpac_resources_from_s3(local_base)[source]¶
Download the CPAC testing resources directory from S3.
- Parameters:
local_base (
string
) – the local directory to save the ‘cpac_resources’ contents
- CPAC.utils.test_init.download_resource_from_s3(s3_url_path)[source]¶
Download test resource from S3 bucket.
- CPAC.utils.test_init.populate_all_templates()[source]¶
Populate all of the template files.
- Parameters:
None
- Return type:
- CPAC.utils.test_init.populate_template_config(config_type: str) str [source]¶
Populate a template config file from CPAC_RESOURCE_DIR with actual filepaths.
- Parameters:
config_type (
string
) – config file to populate; accepts ‘data_config’ and ‘pipeline_config’- Returns:
config_test – filepath to the newly written config file for testing
- Return type:
string
- CPAC.utils.test_init.return_all_niis(base_dir)[source]¶
Walk through a base directory and all subsequent files.
Return the filepaths of all nifti files found.
- Parameters:
base_dir (
string
) – filepath to the base directory to search through- Returns:
nii_list – a list of filepath strings of the nifti files found in base_dir
- Return type:
- CPAC.utils.test_init.return_aws_creds()[source]¶
Return the AWS credentials file given by the CPAC_AWS_CREDS environment variable.
- Parameters:
None
- Returns:
aws_creds – filepath to the AWS credentials with access key id and secret access key
- Return type:
string
- CPAC.utils.test_init.return_resource_dir()[source]¶
Return the filepath of the CPAC_RESOURCE_DIR.
Note the CPAC_RESOURCE_DIR environment variable must be set.
- Parameters:
None
- Returns:
resource_dir – the file path on disk where the cpac resources folder is
- Return type:
string
- CPAC.utils.test_init.return_resource_subfolder(subfolder)[source]¶
Funnction to return subfolders of the CPAC_RESOURCE_DIR.
- Parameters:
subfolder (
string
) – subfolder name to return path of- Returns:
resource_subfolder – filepath to the resource subfolder
- Return type:
string
- CPAC.utils.test_init.return_strats_obj()[source]¶
Return the file path of the strategies obj file from the CPAC_RESOURCE_DIR.
- Parameters:
None
- Returns:
strats_obj – filepath to the strategies obj file
- Return type:
string
- CPAC.utils.test_init.return_subj_measure_dirs(measure)[source]¶
Grab the base directories of subject’s output files for a given measure or workflow.
- Parameters:
measure (
string
) – the measure or workflow or derivative of interest to parse for; this must be the folder name where all of the subject’s test outputs are located (e.g. ‘network_centrality’)- Returns:
subj_measure_dirs – a list of strings of the base directories for each instance of the desired measure folder within the test subjects outputs
- Return type:
- CPAC.utils.test_init.return_subject_list()[source]¶
Return the file path of the subject list file from the CPAC_RESOURCE_DIR.
- Parameters:
None
- Returns:
subject_list – filepath to the subject list yaml file
- Return type:
string
- CPAC.utils.test_init.return_test_subj()[source]¶
Return the subject id.
Note the CPAC_RESOURCE_DIR environment variable must be set.
- Parameters:
None
- Returns:
resource_dir – the file path on disk where the cpac resources folder is
- Return type:
string
- CPAC.utils.test_init.setup_test_logger(logger_name, log_file, level, to_screen=False)[source]¶
Initialize and configure a logger that can write to file and (optionally) the screen.
- Parameters:
logger_name (
string
) – name of the loggerlog_file (
string
) – file path to the log file on disklevel (
integer
) – indicates the level at which the logger should log; this is controlled by integers that come with the python logging package. (e.g. logging.INFO=20, logging.DEBUG=10)to_screen (
boolean (optional)
) – flag to indicate whether to enable logging to the screen
- Returns:
logger – Python logging.Logger object which is capable of logging run- time information about the program to file and/or screen
- Return type:
logging.Logger object
- CPAC.utils.test_init.smooth_nii_file(self, nii_file, fwhm, mask_file=None)[source]¶
Gaussian smooth nifti files and optionally use a mask on the smoothed data.
- Parameters:
nii_file (
string
) – filepath to the nifti file to smoothfwhm (
float
) – FWHM for Gaussian smoothing kernel, in mmmask_file (
string (optional); default=None
) – filepath to the mask file to use
- Returns:
smooth_arr – smoothed nifti image as a numpy array
- Return type:
numpy.ndarray
Test Mocks¶
Test Resources¶
Tests¶
The Trimmer¶
- CPAC.utils.trimmer.the_trimmer(wf, output_dir=None, container=None, s3_creds_path=None)[source]¶
The trimmer: trimming your workflow based on its datasinks.
The assumption here is that all your desired outputs will be placed in an output directory by using a DataSink node.
By analysing a specific output directory, and comparing what is in it with the DataSinks of a workflow, it is possible to audit which Datasinks have already outputted to the output directory. If the DataSink has already fulfilled its function, we infer that previous nodes also had, since they are prerequisites for the DataSink to run. This is the simplest case in which we can prune nodes (i.e. do not execute them), optimizing the execution time.
A brief syntax note: [node] is a node → is a connection, disconsidering which field/attribute →(field)→ indicates a connection considering the field ✓ is a datasink with an existing file ❌ is a datasing witn an missing file
E.g.
[node1] → [node2] → [node3] → [datasink to file.txt ✓]
since file.txt already exist, there is no need to execute the [node3]. Since [node2] only outputs to [node3], and [node3] will not be executed, we can prune [node2]. Same for [node1]. In this case, our workflow will not have any more nodes to run.
There are more complex cases:
1) A node outputs for several nodes, and some of their results are not in the output directory.
- [node1] → [node2] → [node3] → [datasink to file1.txt ✔]
↳ [node4] → [datasink to file2.txt ❌]
for this case, we cannot prune [node1], since its output is used in another branch, for [node4], that is not cached. After trimming, the remaining workflow is:
- [node1]
↳ [node4] → [datasink to file2.txt ❌]
2) The node has several outputs, and an uncached branch down the graph requires one of its outputs.
- [registration] →(warped image)→ [datasink to warped.nii.gz ✔]
↳(transforms)→ [apply transforms] → [datasink to func_warped.nii.gz ❌] [functional] ↗
given func_warped.nii.gz is not cached, we need to perform “apply transforms”, that requires the transforms from the [registration] node. In this case, even that warped.nii.gz is cached, we will reexecute the [registration] again to get the transforms. After trimming, the remaining workflow is:
- [registration]
↳(transforms)→ [apply transforms] → [datasink to func_warped.nii.gz ❌] [functional] ↗
For this implementation, we disregard MapNodes, as their outputs is harder to check.
Iterables are considered in the implementation by expanding the original workflow into what is called an execution graph, creating a node for each iterable value.
- Parameters:
wf (
Workflow
) – A Nipype workflow to be pruned.output_dir (
Path
) – The directory in which the outputs are stored. If not provided, value is inferred from the DataSink nodes.container (
Path
) – The subdirectory from the output_dir in which the output are stored. If not provided, value is inferred from the DataSink nodes.s3_creds_path (
Path
) – Path to S3 credentials, in case output_dir is in a S3 bucket.
- Returns:
wf_new (
Workflow
) – Prunned workflow(replacement_mapping, deletions) (
(Dict
,List)
) – replacement_mapping contains the nodes replaces with input nodes, pointing to files from the output_dirdeletions contains the nodes removed from the workflow, as they do not need to be executed
Typing¶
Utilities¶
General-purpose utilities for C-PAC.
- class CPAC.utils.utils.ScanParameters(scan_parameters: str | dict, subject_id: str, scan: str)[source]¶
A dictionary of scan parameters and access methods.
- check(val_to_check: str, throw_exception: bool)[source]¶
Check that a value is populated for a given key in a parameters dictionary.
- fetch(keys: list[str] | None = None, *, match_case: Literal[False], throw_exception: bool) Any [source]¶
- fetch(keys: list[str] | None = None, *, match_case: Literal[True], throw_exception: bool) tuple[Any, tuple[str, str]]
Fetch the first found parameter from a scan params dictionary.
- Returns:
value
– The value of the parameter.keys
, optional – The matched keys (only ifmatch_case is True
)throw_exception
– Raise an exception if value is""
orNone
?
- fetch_and_convert(keys: list[str], convert_to: type | None = None, fallback: Any | None = None, warn_typeerror: bool = True, throw_exception: bool = False) Any [source]¶
Fetch a parameter from a scan params dictionary and convert it to a given type.
Catch TypeError exceptions and return a fallback value in those cases.
- Parameters:
keys – if multiple keys provided, the value corresponding to the first found will be returned
convert_to – the type to return if possible
fallback – a value to return if the keys are not found in
scan_parameters
warn_typeerror – log a warning if value cannot be converted to
convert_to
type?throw_exception – raise an error for empty string or NoneTypes?
- Returns:
The gathered parameter coerced to the specified type, if possible.
fallback
otherwise.- Return type:
value
- CPAC.utils.utils.check_config_resources(c: Configuration | dict) tuple[float | int, int, int, int] [source]¶
Check pipeline config againts computer resources.
- CPAC.utils.utils.check_prov_for_motion_tool(prov)[source]¶
Check provenance for motion correction tool.
- CPAC.utils.utils.check_random_state(seed)[source]¶
Turn seed into a np.random.RandomState instance.
Code from scikit-learn (https://github.com/scikit-learn/scikit-learn)
- Parameters:
seed (
None | int | instance
ofRandomState
) – If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError.
- CPAC.utils.utils.check_system_deps(check_ants=False, check_ica_aroma=False, check_centrality_degree=False, check_centrality_lfcd=False)[source]¶
Check system for neuroimaging tools AFNI, C3D, FSL and ANTs.
- CPAC.utils.utils.compute_fisher_z_score(correlation_file, timeseries_one_d, input_name)[source]¶
Compute the fisher z transform of the input correlation map.
If the correlation map contains data for multiple ROIs then return z score for each ROI as a seperate NIfTI file.
- Parameters:
correlation_file (
string
) – Input correlations file- Returns:
out_file – list of z_scores for mask or ROI
- Return type:
list (nifti files)
- CPAC.utils.utils.correlation(matrix1, matrix2, match_rows=False, z_scored=False, symmetric=False)[source]¶
Calcluate the correlation between two matrices.
- CPAC.utils.utils.create_id_string(cfg, unique_id, resource, scan_id=None, template_desc=None, atlas_id=None, fwhm=None, subdir=None, extension=None)[source]¶
Create the unique key-value identifier string for BIDS-Derivatives file names.
This is used in the file renaming performed during the Datasink connections.
Example
>>> from CPAC.utils.configuration import Configuration >>> create_id_string(Configuration(), 'sub-1_ses-1', ... 'res-derivative_desc-Mean-1_timeseries', ... scan_id='rest', atlas_id='Yeo_desc-7') 'sub-1_ses-1_task-rest_atlas-Yeo7_res-3mm_desc-Mean1_timeseries'
- CPAC.utils.utils.delete_nested_value(d, keys)[source]¶
Delete nested values.
Examples
>>> delete_nested_value( ... {'nested': {'key1': 'value', 'key2': 'value'}}, ... ['nested', 'key1']) {'nested': {'key2': 'value'}}
- CPAC.utils.utils.extract_output_mean(in_file, output_name)[source]¶
Copy from a 1D file to a text file.
function takes ‘in_file’, which should be an intermediary 1D file from individual-level analysis, containing the mean of the output across all voxels.
it then parses this value and writes it to a .csv file named output_means.csv located in the subject’s output directory
- CPAC.utils.utils.get_fisher_zscore(input_name, map_node=False, wf_name='fisher_z_score')[source]¶
Run the compute_fisher_z_score function as part of a one-node workflow.
- CPAC.utils.utils.get_operand_string(mean, std_dev)[source]¶
Get operand string for fslmaths.
- Parameters:
mean (
string
) – path to img containing meanstd_dev (
string
) – path to img containing standard deviation
- Returns:
op_string – operand string
- Return type:
string
- CPAC.utils.utils.get_scan_params(subject_id: str, scan: str, pipeconfig_start_indx: int | str | None, pipeconfig_stop_indx: int | str | None, data_config_scan_params: dict | str | None = None) tuple[str | None, str | None, int | None, int | None, int | None, int | None, Literal['i', 'i-', 'j', 'j-', 'k', 'k-', ''], float | None] [source]¶
Extract slice timing correction parameters and scan parameters.
- Parameters:
subject_id – subject id
scan – scan id
pipeconfig_start_indx – starting volume index as provided in the pipeline config yaml file
pipeconfig_stop_indx – ending volume index as provided in the pipeline config yaml file
data_config_scan_params – file path to scan parameter JSON file listed in data config yaml file or loaded paramater dictionary
- Returns:
tr
– TR valuetpattern
– slice aquisition pattern string or file pathref_slice
– index of reference slice which is used to allign all other slicesfirst_tr
– index of starting TR or starting volume indexlast_tr
– index of ending TR or ending volume indexpe_direction
– https://bids-specification.readthedocs.io/en/stable/glossary.html#phaseencodingdirection-metadataeffective_echo_spacing
– https://bids-specification.readthedocs.io/en/stable/glossary.html#effectiveechospacing-metadata
- CPAC.utils.utils.get_zscore(map_node=False, wf_name='z_score')[source]¶
Workflow to calculate z-scores.
- Parameters:
wf_name (
string
) – name of the workflow- Returns:
wf
- Return type:
workflow object
Notes
Workflow Inputs:
inputspec.input_file : string path to input functional derivative file for which z score has to be calculated inputspec.mask_file : string path to whole brain functional mask file required to calculate zscore
Workflow Outputs:
outputspec.z_score_img : string path to image containing Normalized Input Image Z scores across full brain.
High Level Workflow Graph:
Detailed Workflow Graph:
Example
>>> wf = get_zscore('example_input') >>> wf.inputs.inputspec.input_file = '/home/data/graph_working_dir/calculate_centrality/degree_centrality_binarize.nii.gz' >>> wf.inputs.inputspec.mask_file = '/home/data/graphs/GraphGeneration/new_mask_3m.nii.gz' >>> wf.run()
- CPAC.utils.utils.list_item_replace(l, old, new)[source]¶
Replace an item in a list.
- Parameters:
l (
list
orstring
)old (
any
) – item to replacenew (
any
) – new item
- Returns:
l – updated
- Return type:
list
orstring
Examples
>>> list_item_replace(['AFNI', 'FSL'], 'AFNI', '3dSkullStrip') ['3dSkullStrip', 'FSL'] >>> list_item_replace(['AFNI', 'FSL'], 'FSL', 'BET') ['AFNI', 'BET']
- CPAC.utils.utils.lookup_nested_value(d, keys)[source]¶
Look up nested values.
Examples
>>> lookup_nested_value({'nested': {'True': True}}, ['nested', 'True']) True >>> lookup_nested_value({'nested': {'None': None}}, ['nested', 'None']) ''
- CPAC.utils.utils.read_json(json_file)[source]¶
Read a JSON file and return the contents as a dictionary.
- CPAC.utils.utils.remove_False(d, k)[source]¶
Remove “Off” and False from a list at a given nested key.
Examples
>>> remove_False({'a': {'b': [1, False, 2, "Off", 3]}}, ['a', 'b']) {'a': {'b': [1, 2, 3]}}
- CPAC.utils.utils.remove_None(d, k)[source]¶
Remove “None” and None from a list at a given nested key.
Examples
>>> remove_None({'a': {'b': [1, None, 2, "None", 3]}}, ['a', 'b']) {'a': {'b': [1, 2, 3]}}
- CPAC.utils.utils.repickle(directory)[source]¶
Deprecated since version 1.8.8.
Python 2’s end of life was over 4 years prior to this release. A user jumping from a C-PAC version that used Python 2 can use this function in any C-PAC version from 1.6.2 up until its removal in an upcoming version.
Recursively check a directory; convert Python 2 pickles to Python 3 pickles.
directory : str
None
- CPAC.utils.utils.replace_in_strings(d, replacements=None)[source]¶
Recursively replace substrings.
- Parameters:
d (
any
)replacements (
list
of2-tuples
) –- 0str
substring to replace
- 1str
replacement substring
- Returns:
d – same as input, but updated
- Return type:
any
Examples
>>> replace_in_strings({'key': 'test${resolution_for_func_preproc}'}) {'key': 'test${func_resolution}'}
- CPAC.utils.utils.safe_shape(*vol_data)[source]¶
Check if the volume of multiple ndarrays are the same shape.
The volume is encoded in the first three dimensions of the ndarray.
- Parameters:
vol_data0 (
ndarray
) – Volumes to checkvol_data1 (
ndarray
) – Volumes to check... (
ndarray
) – Volumes to checkvol_datan (
ndarray
) – Volumes to check
- Returns:
same_volume – True only if all volumes have the same shape.
- Return type:
- CPAC.utils.utils.set_nested_value(d, keys, value)[source]¶
Set nested values.
Examples
>>> set_nested_value({}, ['nested', 'keys'], 'value') {'nested': {'keys': 'value'}}
- CPAC.utils.utils.update_config_dict(old_dict)[source]¶
Convert an old config dict to a new config dict.
- Parameters:
old_dict (
dict
)- Returns:
Examples
>>> a, b, c = update_config_dict({ ... 'pipelineName': 'example-pipeline', '2': None}) >>> a {'pipeline_setup': {'pipeline_name': 'example-pipeline'}} >>> b {'2': None} >>> c {'pipeline_setup': {'pipeline_name': 'example-pipeline'}, '2': None}
- CPAC.utils.utils.update_nested_dict(d_base, d_update, fully_specified=False)[source]¶
Update dictionary of varying depth.
- Parameters:
- Returns:
d_base – original dictionary with updates
- Return type:
Examples
>>> d_base = {'pipeline_name': 'cpac-default-pipeline', ... 'output_directory': {'path': '/output', ... 'write_func_outputs': False, ... 'write_debugging_outputs': False, ... 'output_tree': 'default', ... 'quality_control': { ... 'generate_quality_control_images': True, ... 'generate_xcpqc_files': True}}, ... 'working_directory': {'path': '/tmp', 'remove_working_dir': True}, ... 'log_directory': {'run_logging': True, 'path': '/logs'}, ... 'system_config': {'maximum_memory_per_participant': 1, ... 'max_cores_per_participant': 1, ... 'num_ants_threads': 4, ... 'num_participants_at_once': 1}, ... 'Amazon-AWS': {'aws_output_bucket_credentials': None, ... 's3_encryption': False}} >>> d_update = {'pipeline_name': 'cpac_fmriprep-options', ... 'system_config': {'num_ants_threads': 1}, ... 'Amazon-AWS': {'s3_encryption': True}} >>> str(update_nested_dict(d_base, d_update)) == str({ ... 'pipeline_name': 'cpac_fmriprep-options', 'output_directory': { ... 'path': '/output', 'write_func_outputs': False, ... 'write_debugging_outputs': False, 'output_tree': 'default', ... 'quality_control': { ... 'generate_quality_control_images': True, ... 'generate_xcpqc_files': True} ... }, 'working_directory': { ... 'path': '/tmp', 'remove_working_dir': True ... }, 'log_directory': {'run_logging': True, 'path': '/logs'}, ... 'system_config': { ... 'maximum_memory_per_participant': 1, ... 'max_cores_per_participant': 1, ... 'num_ants_threads': 1, 'num_participants_at_once': 1 ... }, 'Amazon-AWS': { ... 'aws_output_bucket_credentials': None, 's3_encryption': True}}) True >>> tse_base = {'timeseries_extraction': {'run': True, 'tse_roi_paths': { ... '/cpac_templates/CC400.nii.gz': 'Avg', ... '/cpac_templates/aal_mask_pad.nii.gz': 'Avg' ... }, 'realignment': 'ROI_to_func'}} >>> str(update_nested_dict(tse_base, {})) == str({ ... 'timeseries_extraction': {'run': True, 'tse_roi_paths': { ... '/cpac_templates/CC400.nii.gz': 'Avg', ... '/cpac_templates/aal_mask_pad.nii.gz': 'Avg' ... }, 'realignment': 'ROI_to_func'}}) True >>> str(update_nested_dict(tse_base, {'timeseries_extraction': { ... 'tse_roi_paths': {'/cpac_templates/rois_3mm.nii.gz': 'Voxel'} ... }})) == str({'timeseries_extraction': {'run': True, 'tse_roi_paths': { ... '/cpac_templates/rois_3mm.nii.gz': 'Voxel' ... }, 'realignment': 'ROI_to_func'}}) True >>> str(update_nested_dict(tse_base, {'timeseries_extraction': { ... 'roi_paths_fully_specified': False, ... 'tse_roi_paths': {'/cpac_templates/rois_3mm.nii.gz': 'Voxel'} ... }})) == str({'timeseries_extraction': {'run': True, 'tse_roi_paths': { ... '/cpac_templates/CC400.nii.gz': 'Avg', ... '/cpac_templates/aal_mask_pad.nii.gz': 'Avg', ... '/cpac_templates/rois_3mm.nii.gz': 'Voxel' ... }, 'realignment': 'ROI_to_func'}}) True >>> str(update_nested_dict(tse_base, {'timeseries_extraction': { ... 'roi_paths_fully_specified': False, ... 'tse_roi_paths': {'/cpac_templates/aal_mask_pad.nii.gz': 'Voxel'} ... }})) == str({'timeseries_extraction': {'run': True, ... 'tse_roi_paths': { ... '/cpac_templates/CC400.nii.gz': 'Avg', ... '/cpac_templates/aal_mask_pad.nii.gz': 'Voxel' ... }, 'realignment': 'ROI_to_func'}}) True >>> str(update_nested_dict(tse_base, {'timeseries_extraction': { ... 'tse_roi_paths': {'/cpac_templates/aal_mask_pad.nii.gz': 'Voxel'} ... }})) == str({'timeseries_extraction': {'run': True, 'tse_roi_paths': { ... '/cpac_templates/aal_mask_pad.nii.gz': 'Voxel' ... }, 'realignment': 'ROI_to_func'}}) True
- CPAC.utils.utils.update_pipeline_values_1_8(d_old)[source]¶
Update pipeline config values that changed from C-PAC 1.7 to 1.8.
Examples
>>> update_pipeline_values_1_8({'segmentation': {'tissue_segmentation': { ... 'using': ['FSL-FAST Thresholding', 'Customized Thresholding']}}}) {'segmentation': {'tissue_segmentation': {'using': ['FSL-FAST'], 'FSL-FAST': {'thresholding': {'use': 'Custom'}}}}} >>> update_pipeline_values_1_8({'segmentation': {'tissue_segmentation': { ... 'using': ['FSL-FAST Thresholding']}}}) {'segmentation': {'tissue_segmentation': {'using': ['FSL-FAST'], 'FSL-FAST': {'thresholding': {'use': 'Auto'}}}}}
- CPAC.utils.utils.update_values_from_list(d_old, last_exception=None)[source]¶
Convert 1-length lists of an expected type to single items of that type…
…or to convert singletons of an expected list of a type into lists thereof. Also handles some type conversions against the schema.
- Parameters:
- Returns:
d – updated
- Return type:
Examples
>>> update_values_from_list({'pipeline_setup': { ... 'pipeline_name': ['one_string']}}) {'pipeline_setup': {'pipeline_name': 'one_string'}} >>> update_values_from_list({'nuisance_corrections': { ... '1-ICA-AROMA': {'run': [False]}}}) {'nuisance_corrections': {'1-ICA-AROMA': {'run': [False]}}}
- CPAC.utils.utils.write_output_json(json_data, filename, indent=3, basedir=None)[source]¶
Write a dictionary to a JSON file.
Versioning¶
Gather and report versions.