Source code for CPAC.nuisance.nuisance

# Copyright (C) 2012-2024  C-PAC Developers

# This file is part of C-PAC.

# C-PAC is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation, either version 3 of the License, or (at your
# option) any later version.

# C-PAC is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
# License for more details.

# You should have received a copy of the GNU Lesser General Public
# License along with C-PAC. If not, see <https://www.gnu.org/licenses/>.
import os
from typing import Literal

import numpy as np
import nibabel as nib
from nipype.interfaces import afni, fsl
from nipype.interfaces.afni import MaskTool, utils as afni_utils
import nipype.interfaces.utility as util
from nipype.pipeline.engine.workflows import Workflow

import CPAC
from CPAC.aroma.aroma import create_aroma
from CPAC.nuisance.utils import (
    find_offending_time_points,
    generate_summarize_tissue_mask,
    temporal_variance_mask,
)
from CPAC.nuisance.utils.compcor import (
    calc_compcor_components,
    cosine_filter,
    TR_string_to_float,
)
from CPAC.pipeline import nipype_pipeline_engine as pe
from CPAC.pipeline.engine import ResourcePool
from CPAC.pipeline.nodeblock import nodeblock
from CPAC.registration.registration import (
    apply_transform,
    warp_timeseries_to_EPItemplate,
    warp_timeseries_to_T1template,
)
from CPAC.seg_preproc.utils import erosion, mask_erosion
from CPAC.utils.configuration import Configuration
from CPAC.utils.datasource import check_for_s3
from CPAC.utils.interfaces.function import Function
from CPAC.utils.interfaces.pc import PC
from CPAC.utils.monitoring import IFLOGGER
from CPAC.utils.utils import check_prov_for_regtool
from .bandpass import afni_1dBandpass, bandpass_voxels


def choose_nuisance_blocks(cfg, rpool, generate_only=False):
    """
    Handle selecting appropriate blocks based on existing config and resource pool.

    Parameters
    ----------
    cfg : CPAC.utils.configuration.Configuration

    generate_only : boolean
        generate but don't run

    Returns
    -------
    nuisance : list
    """
    nuisance = []
    to_template_cfg = cfg.registration_workflows["functional_registration"][
        "func_registration_to_template"
    ]
    apply_transform_using = to_template_cfg["apply_transform"]["using"]
    input_interface = {
        "default": ("desc-preproc_bold", ["desc-preproc_bold", "bold"]),
        "abcd": ("desc-preproc_bold", "bold"),
        "single_step_resampling_from_stc": ("desc-preproc_bold", "desc-stc_bold"),
    }.get(apply_transform_using)
    if input_interface is not None:
        if "T1_template" in to_template_cfg["target_template"]["using"]:
            nuisance.append((nuisance_regressors_generation_T1w, input_interface))
        if "EPI_template" in to_template_cfg["target_template"]["using"]:
            nuisance.append(
                (nuisance_regressors_generation_EPItemplate, input_interface)
            )

        if (
            not generate_only
            and cfg["nuisance_corrections", "2-nuisance_regression", "space"]
            == "native"
        ):
            nuisance.append((nuisance_regression_native, input_interface))

    return nuisance


def erode_mask(name, segmentmap=True):
    wf = pe.Workflow(name=name)

    inputspec = pe.Node(
        util.IdentityInterface(
            fields=["mask", "erode_mm", "erode_prop", "brain_mask", "mask_erode_mm"]
        ),
        name="inputspec",
    )

    outputspec = pe.Node(
        util.IdentityInterface(fields=["eroded_mask"]), name="outputspec"
    )

    def form_mask_erosion_prop(erosion_prop):
        if not isinstance(erosion_prop, (int, float)):
            erosion_prop = 0
        return erosion_prop**3

    ero_imports = [
        "import scipy.ndimage as nd",
        "import numpy as np",
        "import nibabel as nib",
        "import os",
        "from CPAC.seg_preproc.utils import _erode",
    ]

    eroded_mask = pe.Node(
        Function(
            input_names=[
                "roi_mask",
                "skullstrip_mask",
                "mask_erosion_mm",
                "mask_erosion_prop",
            ],
            output_names=["output_roi_mask", "eroded_skullstrip_mask"],
            function=mask_erosion,
            imports=ero_imports,
        ),
        name="erode_skullstrip_mask",
        mem_gb=2.3,
        mem_x=(4664065662093477 / 2417851639229258349412352, "roi_mask"),
    )

    wf.connect(inputspec, "brain_mask", eroded_mask, "skullstrip_mask")
    wf.connect(inputspec, "mask", eroded_mask, "roi_mask")

    wf.connect(
        inputspec,
        ("erode_prop", form_mask_erosion_prop),
        eroded_mask,
        "mask_erosion_prop",
    )
    wf.connect(inputspec, "mask_erode_mm", eroded_mask, "mask_erosion_mm")

    if not segmentmap:
        wf.connect(eroded_mask, "output_roi_mask", outputspec, "eroded_mask")
    if segmentmap:
        erosion_segmentmap = pe.Node(
            Function(
                input_names=["roi_mask", "erosion_mm", "erosion_prop"],
                output_names=["eroded_roi_mask"],
                function=erosion,
                imports=ero_imports,
            ),
            name="erode_mask",
        )

        wf.connect(eroded_mask, "output_roi_mask", erosion_segmentmap, "roi_mask")

        wf.connect(inputspec, "erode_prop", erosion_segmentmap, "erosion_prop")
        wf.connect(inputspec, "erode_mm", erosion_segmentmap, "erosion_mm")

        wf.connect(erosion_segmentmap, "eroded_roi_mask", outputspec, "eroded_mask")

    return wf


def gather_nuisance(
    functional_file_path,
    selector,
    grey_matter_summary_file_path=None,
    white_matter_summary_file_path=None,
    csf_summary_file_path=None,
    acompcor_file_path=None,
    tcompcor_file_path=None,
    global_summary_file_path=None,
    motion_parameters_file_path=None,
    custom_file_paths=None,
    censor_file_path=None,
):
    """
    Gather nuisance regressors into a single TSV file.

    Gathers the various nuisance regressors together into a single tab-
    separated values file that is an appropriate for input into
    3dTproject.

    :param functional_file_path: path to file that the regressors are
        being calculated for, is used to calculate the length of the
        regressors for error checking and in particular for calculating
        spike regressors
    :param output_file_path: path to output TSV that will contain the
        various nuisance regressors as columns
    :param grey_matter_summary_file_path: path to TSV that includes
        summary of grey matter time courses, e.g. output of
        mask_summarize_time_course
    :param white_matter_summary_file_path: path to TSV that includes
        summary of white matter time courses, e.g. output of
        mask_summarize_time_course
    :param csf_summary_file_path: path to TSV that includes summary of
        csf time courses, e.g. output of mask_summarize_time_course
    :param acompcor_file_path: path to TSV that includes acompcor time
        courses, e.g. output of mask_summarize_time_course
    :param tcompcor_file_path: path to TSV that includes tcompcor time
        courses, e.g. output of mask_summarize_time_course
    :param global_summary_file_path: path to TSV that includes summary
        of global time courses, e.g. output of mask_summarize_time_course
    :param motion_parameters_file_path: path to TSV that includes
        motion parameters
    :param custom_file_paths: path to CSV/TSV files to use as regressors
    :param censor_file_path: path to TSV with a single column with '1's
        for indices that should be retained and '0's for indices that
        should be censored
    :return: out_file (str), censor_indices (list)
    """
    # Basic checks for the functional image
    if not functional_file_path or (
        not functional_file_path.endswith(".nii")
        and not functional_file_path.endswith(".nii.gz")
    ):
        msg = (
            f"Invalid value for input_file ({functional_file_path}). Should be a nifti "
            "file and should exist"
        )
        raise ValueError(msg)

    try:
        functional_image = nib.load(functional_file_path)
    except:
        msg = (
            f"Invalid value for input_file ({functional_file_path}). Should be a nifti "
            "file and should exist"
        )
        raise ValueError(msg)

    if len(functional_image.shape) < 4 or functional_image.shape[3] < 2:  # noqa: PLR2004
        msg = f"Invalid input_file ({functional_file_path}). Expected 4D file."
        raise ValueError(msg)
    regressor_length = functional_image.shape[3]

    # selector = selector.selector

    if not isinstance(selector, dict):
        msg = f"Invalid type for selectors {type(selector)}, expecting dict"
        raise ValueError(msg)

    regressor_files = {
        "aCompCor": acompcor_file_path,
        "tCompCor": tcompcor_file_path,
        "GlobalSignal": global_summary_file_path,
        "GreyMatter": grey_matter_summary_file_path,
        "WhiteMatter": white_matter_summary_file_path,
        "CerebrospinalFluid": csf_summary_file_path,
        "Motion": motion_parameters_file_path,
    }

    regressors_order = [
        "Motion",
        "GlobalSignal",
        "aCompCor",
        "tCompCor",
        "CerebrospinalFluid",
        "WhiteMatter",
        "GreyMatter",
    ]

    motion_labels = ["RotY", "RotX", "RotZ", "Y", "X", "Z"]

    # Compile regressors into a matrix
    column_names = []
    nuisance_regressors = []

    for regressor_type in regressors_order:
        if regressor_type not in selector:
            continue

        regressor_file = regressor_files[regressor_type]

        regressor_selector = selector.get(regressor_type) or {}

        if "summary" in regressor_selector:
            if isinstance(regressor_selector["summary"], str):
                regressor_selector["summary"] = {
                    "method": regressor_selector["summary"],
                }

        if not regressor_file or not os.path.isfile(regressor_file):
            msg = (
                f"Regressor type {regressor_type} specified in selectors "
                "but the corresponding file was not found!"
            )
            raise ValueError(msg)

        try:
            regressors = np.loadtxt(regressor_file)
        except (OSError, TypeError, UnicodeDecodeError, ValueError) as error:
            msg = f"Could not read regressor {regressor_type} from {regressor_file}."
            raise OSError(msg) from error

        if regressors.shape[0] != regressor_length:
            msg = (
                f"Number of time points in {regressor_file} ({regressors.shape[0]}) is "
                "inconsistent with length of functional "
                f"file {functional_file_path} ({regressor_length})"
            )
            raise ValueError(msg)

        if regressor_type == "Motion":
            num_regressors = 6
        elif not regressor_selector.get("summary", {}).get("components"):
            num_regressors = 1
        else:
            num_regressors = regressor_selector["summary"]["components"]

        if len(regressors.shape) == 1:
            regressors = np.expand_dims(regressors, axis=1)

        regressors = regressors[:, 0:num_regressors]

        if regressors.shape[1] != num_regressors:
            msg = (
                f"Expecting {num_regressors} regressors for {regressor_type}, but "
                f"found {regressors.shape[1]} in file {regressor_file}."
            )
            raise ValueError(msg)

        # Add in the regressors, making sure to also add in the column name
        for regressor_index in range(regressors.shape[1]):
            if regressor_type == "Motion":
                regressor_name = motion_labels[regressor_index]
            else:
                summary_method = regressor_selector["summary"]
                if isinstance(summary_method, dict):
                    summary_method = summary_method["method"]

                regressor_name = f"{regressor_type}{summary_method}{regressor_index}"

            column_names.append(regressor_name)
            nuisance_regressors.append(regressors[:, regressor_index])

            if regressor_selector.get("include_delayed", False):
                column_names.append(f"{regressor_name}Delay")
                nuisance_regressors.append(
                    np.append([0.0], regressors[0:-1, regressor_index])
                )

            if regressor_selector.get("include_backdiff", False):
                column_names.append(f"{regressor_name}BackDiff")
                nuisance_regressors.append(
                    np.append([0.0], np.diff(regressors[:, regressor_index], n=1))
                )

            if regressor_selector.get("include_squared", False):
                column_names.append(f"{regressor_name}Sq")
                nuisance_regressors.append(np.square(regressors[:, regressor_index]))

            if regressor_selector.get("include_delayed_squared", False):
                column_names.append(f"{regressor_name}DelaySq")
                nuisance_regressors.append(
                    np.square(np.append([0.0], regressors[0:-1, regressor_index]))
                )

            if regressor_selector.get("include_backdiff_squared", False):
                column_names.append(f"{regressor_name}BackDiffSq")
                nuisance_regressors.append(
                    np.square(
                        np.append([0.0], np.diff(regressors[:, regressor_index], n=1))
                    )
                )

    # Add custom regressors
    if custom_file_paths:
        for custom_file_path in custom_file_paths:
            try:
                custom_regressor = np.loadtxt(custom_file_path)
            except:
                msg = "Could not read regressor {0} from {1}.".format(
                    "Custom", custom_file_path
                )
                raise ValueError(msg)

            if len(custom_regressor.shape) > 1 and custom_regressor.shape[1] > 1:
                msg = (
                    f"Invalid format for censor file {custom_file_path}, should be a single "
                    "column containing 1s for volumes to keep and 0s for volumes "
                    "to censor."
                )
                raise ValueError(msg)

            column_names.append(custom_file_path)
            nuisance_regressors.append(custom_regressor)

    censor_indices = []
    # Add spike regressors
    if selector.get("Censor", {}).get("method") == "SpikeRegression":
        selector = selector["Censor"]

        regressor_file = censor_file_path

        if not regressor_file:
            num_thresh = len(selector["thresholds"])
            IFLOGGER.warning(
                "%s Censor specified with %sthreshold%s %s in selectors but threshold"
                " was not reached.",
                selector["method"],
                "no " if num_thresh == 0 else "",
                "" if num_thresh == 1 else "s",
                [thresh.get("value") for thresh in selector["thresholds"]],
            )
            # All good to pass through if nothing to censor
            censor_volumes = np.ones((regressor_length,), dtype=int)
        else:
            try:
                censor_volumes = np.loadtxt(regressor_file)
            except:
                msg = (
                    f"Could not read regressor {regressor_type} from {regressor_file}."
                )
                raise ValueError(msg)

        if (
            len(censor_volumes.shape) > 1 and censor_volumes.shape[1] > 1
        ) or not np.all(np.isin(censor_volumes, [0, 1])):
            msg = (
                f"Invalid format for censor file {regressor_file}, should be a single "
                "column containing 1s for volumes to keep and 0s for volumes "
                "to censor."
            )
            raise ValueError(msg)

        censor_volumes = censor_volumes.flatten()
        censor_indices = np.where(censor_volumes == 0)[0]

        out_of_range_censors = censor_indices >= regressor_length
        if np.any(out_of_range_censors):
            msg = (
                f"Censor volumes {censor_indices[out_of_range_censors]} are out of range"
                f"on censor file {regressor_file}, calculated "
                f"regressor length is {regressor_length}"
            )
            raise ValueError(msg)

        if len(censor_indices) > 0:
            # if number_of_previous_trs_to_censor and number_of_subsequent_trs_to_censor
            # are not set, assume they should be zero
            previous_trs_to_censor = selector.get("number_of_previous_trs_to_censor", 0)

            subsequent_trs_to_censor = selector.get(
                "number_of_subsequent_trs_to_censor", 0
            )

            spike_regressors = np.zeros(regressor_length)

            for censor_index in censor_indices:
                censor_begin_index = censor_index - previous_trs_to_censor
                if censor_begin_index < 0:
                    censor_begin_index = 0

                censor_end_index = censor_index + subsequent_trs_to_censor
                if censor_end_index >= regressor_length:
                    censor_end_index = regressor_length - 1

                spike_regressors[censor_begin_index : censor_end_index + 1] = 1

            for censor_index in np.where(spike_regressors == 1)[0]:
                column_names.append(f"SpikeRegression{censor_index}")
                spike_regressor_index = np.zeros(regressor_length)
                spike_regressor_index[censor_index] = 1
                nuisance_regressors.append(spike_regressor_index.flatten())

    if len(nuisance_regressors) == 0:
        return None

    # Compile columns into regressor file
    output_file_path = os.path.join(os.getcwd(), "nuisance_regressors.1D")

    with open(output_file_path, "w") as ofd:
        # write out the header information
        ofd.write(f"# C-PAC {CPAC.__version__}\n")
        ofd.write("# Nuisance regressors:\n")
        ofd.write("# " + "\t".join(column_names) + "\n")

        nuisance_regressors = np.array(nuisance_regressors)
        np.savetxt(ofd, nuisance_regressors.T, fmt="%.18f", delimiter="\t")

    return output_file_path, censor_indices


[docs] def create_regressor_workflow( nuisance_selectors, use_ants, ventricle_mask_exist, csf_mask_exist, all_bold=False, name="nuisance_regressors", ) -> pe.Workflow: """ Remove noise from fMRI data. Workflow for the removal of various signals considered to be noise from resting state fMRI data. The residual signals for linear regression denoising is performed in a single model. Therefore the residual time-series will be orthogonal to all signals. Parameters ---------- :param nuisance_selectors: dictionary describing nuisance regression to be performed :param use_ants: flag indicating whether FNIRT or ANTS is used :param name: Name of the workflow, defaults to 'nuisance' :return: nuisance : nipype.pipeline.engine.Workflow Nuisance workflow. Notes ----- Workflow Inputs --------------- Workflow Inputs:: inputspec.functional_file_path : string (nifti file) Path to realigned and motion corrected functional image (nifti) file. inputspec.functional_brain_mask_file_path : string (nifti file) Whole brain mask corresponding to the functional data. inputspec.anatomical_file_path : string (nifti file) Corresponding preprocessed anatomical. inputspec.wm_mask_file_path : string (nifti file) Corresponding white matter mask. inputspec.csf_mask_file_path : string (nifti file) Corresponding cerebral spinal fluid mask. inputspec.gm_mask_file_path : string (nifti file) Corresponding grey matter mask. inputspec.lat_ventricles_mask_file_path : string (nifti file) Mask of lateral ventricles calculated from the Harvard Oxford Atlas. inputspec.mni_to_anat_linear_xfm_file_path: string (nifti file) FLIRT Linear MNI to Anat transform inputspec.anat_to_mni_initial_xfm_file_path: string (nifti file) ANTS initial transform from anat to MNI inputspec.anat_to_mni_rigid_xfm_file_path: string (nifti file) ANTS rigid (6 parameter, no scaling) transform from anat to MNI inputspec.anat_to_mni_affine_xfm_file_path: string (nifti file) ANTS affine (13 parameter, scales and shears) transform from anat to MNI inputspec.func_to_anat_linear_xfm_file_path: string (nifti file) FLIRT Linear Transform between functional and anatomical spaces inputspec.motion_parameter_file_path : string (text file) Corresponding rigid-body motion parameters. Matrix in the file should be of shape (`T`, `R`), `T` time points and `R` motion parameters. inputspec.fd_j_file_path : string (text file) Framewise displacement calculated from the volume alignment. inputspec.fd_p_file_path : string (text file) Framewise displacement calculated from the motion parameters. inputspec.dvars_file_path : string (text file) DVARS calculated from the functional data. inputspec.selector : Dictionary containing configuration parameters for nuisance regression. To not run a type of nuisance regression, it may be ommited from the dictionary. selector = { aCompCor: { summary: { filter: 'cosine', Principal components are estimated after using a discrete cosine filter with 128s cut-off, Leave filter field blank, if selected aCompcor method is 'DetrendPC' method: 'DetrendPC', aCompCor will extract the principal components from detrended tissues signal, components: number of components to retain, }, tissues: list of tissues to extract regressors. Valid values are: 'WhiteMatter', 'CerebrospinalFluid', extraction_resolution: None | floating point value indicating isotropic resolution (ex. 2 for 2mm x 2mm x 2mm that data should be extracted at, the corresponding tissue mask will be resampled to this resolution. The functional data will also be resampled to this resolution, and the extraction will occur at this new resolution. The goal is to avoid contamination from undesired tissue components when extracting nuisance regressors, erode_mask: True | False, whether or not the mask should be eroded to further avoid a mask overlapping with a different tissue class, include_delayed: True | False, whether or not to include a one-frame delay regressor, default to False, include_squared: True | False, whether or not to include a squared regressor, default to False, include_delayed_squared: True | False, whether or not to include a squared one-frame delay regressor, default to False, include_backdiff: True | False, whether or not to include a one-lag difference, default to False, include_backdiff_squared: True | False, whether or not to include a squared one-frame delay regressor, default to False, }, tCompCor: { summary: { filter: 'cosine', Principal components are estimated after using a discrete cosine filter with 128s cut-off, Leave filter field blank, if selected tCompcor method is 'DetrendPC' method: 'DetrendPC', tCompCor will extract the principal components from detrended tissues signal, components: number of components to retain, }, threshold: floating point number = cutoff as raw variance value, floating point number followed by SD (ex. 1.5SD) = mean + a multiple of the SD, floating point number followed by PCT (ex. 2PCT) = percentile from the top (ex is top 2%), by_slice: True | False, whether or not the threshold criterion should be applied by slice or across the entire volume, makes most sense for thresholds using SD or PCT, include_delayed: True | False (same as for aCompCor), include_squared: True | False (same as for aCompCor), include_delayed_squared: True | False (same as for aCompCor), include_backdiff: True | False (same as for aCompCor), include_backdiff_squared: True | False (same as for aCompCor), }, WhiteMatter: { summary: { method: 'PC', 'DetrendPC', 'Mean', 'NormMean' or 'DetrendNormMean', components: number of components to retain, if PC, }, extraction_resolution: None | floating point value (same as for aCompCor), erode_mask: True | False (same as for aCompCor), include_delayed: True | False (same as for aCompCor), include_squared: True | False (same as for aCompCor), include_delayed_squared: True | False (same as for aCompCor), include_backdiff: True | False (same as for aCompCor), include_backdiff_squared: True | False (same as for aCompCor), }, CerebrospinalFluid: { summary: { method: 'PC', 'DetrendPC', 'Mean', 'NormMean' or 'DetrendNormMean', components: number of components to retain, if PC, }, extraction_resolution: None | floating point value (same as for aCompCor), erode_mask: True | False (same as for aCompCor), include_delayed: True | False (same as for aCompCor), include_squared: True | False (same as for aCompCor), include_delayed_squared: True | False (same as for aCompCor), include_backdiff: True | False (same as for aCompCor), include_backdiff_squared: True | False (same as for aCompCor), }, GreyMatter: { summary: { method: 'PC', 'DetrendPC', 'Mean', 'NormMean' or 'DetrendNormMean', components: number of components to retain, if PC, }, extraction_resolution: None | floating point value (same as for aCompCor), erode_mask: True | False (same as for aCompCor), include_delayed: True | False (same as for aCompCor), include_squared: True | False (same as for aCompCor), include_delayed_squared: True | False (same as for aCompCor), include_backdiff: True | False (same as for aCompCor), include_backdiff_squared: True | False (same as for aCompCor), }, GlobalSignal: { summary: { method: 'PC', 'DetrendPC', 'Mean', 'NormMean' or 'DetrendNormMean', components: number of components to retain, if PC, }, include_delayed: True | False (same as for aCompCor), include_squared: True | False (same as for aCompCor), include_delayed_squared: True | False (same as for aCompCor), include_backdiff: True | False (same as for aCompCor), include_backdiff_squared: True | False (same as for aCompCor), }, Motion: None | { include_delayed: True | False (same as for aCompCor), include_squared: True | False (same as for aCompCor), include_delayed_squared: True | False (same as for aCompCor), include_backdiff: True | False (same as for aCompCor), include_backdiff_squared: True | False (same as for aCompCor), }, Censor: { method: 'Kill', 'Zero', 'Interpolate', 'SpikeRegression', thresholds: list of dictionary, { type: 'FD_J', 'FD_P', 'DVARS', value: threshold value to be applied to metric }, number_of_previous_trs_to_censor: integer, number of previous TRs to censor (remove or regress, if spike regression) number_of_subsequent_trs_to_censor: integer, number of subsequent TRs to censor (remove or regress, if spike regression) }, PolyOrt: { degree: integer, polynomial degree up to which will be removed, e.g. 2 means constant + linear + quadratic, practically that is probably, the most that will be need especially if band pass filtering }, Bandpass: { bottom_frequency: floating point value, frequency in hertz of the highpass part of the pass band, frequencies below this will be removed, top_frequency: floating point value, frequency in hertz of the lowpass part of the pass band, frequencies above this will be removed }, Custom: [ { file: file containing the regressors. It can be a CSV file, with one regressor per column, or a Nifti image, with one regressor per voxel. convolve: perform the convolution operation of the given regressor with the timeseries. } ] } Workflow Outputs:: outputspec.residual_file_path : string (nifti file) Path of residual file in nifti format outputspec.regressors_file_path : string (TSV file) Path of TSV file of regressors used. Column name indicates the regressors included . outputspec.censor_indices : list Indices of censored volumes Nuisance Procedure: 1. Compute nuisance regressors based on input selections. 2. Calculate residuals with respect to these nuisance regressors in a single model for every voxel. High Level Workflow Graph: .. exec:: from CPAC.nuisance import create_regressor_workflow wf = create_regressor_workflow({ 'PolyOrt': {'degree': 2}, 'tCompCor': {'summary': {'method': 'PC', 'components': 5}, 'threshold': '1.5SD', 'by_slice': True}, 'aCompCor': {'summary': {'method': 'PC', 'components': 5}, 'tissues': ['WhiteMatter', 'CerebrospinalFluid'], 'extraction_resolution': 2}, 'WhiteMatter': {'summary': {'method': 'PC', 'components': 5}, 'extraction_resolution': 2}, 'CerebrospinalFluid': {'summary': {'method': 'PC', 'components': 5}, 'extraction_resolution': 2, 'erode_mask': True}, 'GreyMatter': {'summary': {'method': 'PC', 'components': 5}, 'extraction_resolution': 2, 'erode_mask': True}, 'GlobalSignal': {'summary': 'Mean', 'include_delayed': True, 'include_squared': True, 'include_delayed_squared': True}, 'Motion': {'include_delayed': True, 'include_squared': True, 'include_delayed_squared': True}, 'Censor': {'method': 'Interpolate', 'thresholds': [{'type': 'FD_J', 'value': 0.5}, {'type': 'DVARS', 'value': 0.7}]} }, use_ants=False) wf.write_graph( graph2use='orig', dotfilename='./images/generated/nuisance.dot' ) .. image:: ../../images/generated/nuisance.png :width: 1000 Detailed Workflow Graph: .. image:: ../../images/generated/nuisance_detailed.png :width: 1000 """ nuisance_wf = pe.Workflow(name=name) inputspec = pe.Node( util.IdentityInterface( fields=[ "selector", "functional_file_path", "anatomical_file_path", "anatomical_eroded_brain_mask_file_path", "gm_mask_file_path", "wm_mask_file_path", "csf_mask_file_path", "lat_ventricles_mask_file_path", "functional_brain_mask_file_path", "func_to_anat_linear_xfm_file_path", "anat_to_func_linear_xfm_file_path", "mni_to_anat_linear_xfm_file_path", "anat_to_mni_linear_xfm_file_path", "motion_parameters_file_path", "fd_j_file_path", "fd_p_file_path", "dvars_file_path", "creds_path", "dl_dir", "tr", ] ), name="inputspec", ) outputspec = pe.Node( util.IdentityInterface(fields=["regressors_file_path", "censor_indices"]), name="outputspec", ) functional_mean = pe.Node(interface=afni_utils.TStat(), name="functional_mean") functional_mean.inputs.options = "-mean" functional_mean.inputs.outputtype = "NIFTI_GZ" nuisance_wf.connect(inputspec, "functional_file_path", functional_mean, "in_file") # Resources to create regressors pipeline_resource_pool = { "Anatomical": (inputspec, "anatomical_file_path"), "AnatomicalErodedMask": (inputspec, "anatomical_eroded_brain_mask_file_path"), "Functional": (inputspec, "functional_file_path"), "Functional_mean": (functional_mean, "out_file"), "GlobalSignal": (inputspec, "functional_brain_mask_file_path"), "WhiteMatter": (inputspec, "wm_mask_file_path"), "CerebrospinalFluid": (inputspec, "csf_mask_file_path"), "GreyMatter": (inputspec, "gm_mask_file_path"), "Ventricles": (inputspec, "lat_ventricles_mask_file_path"), "Transformations": { "func_to_anat_linear_xfm": (inputspec, "func_to_anat_linear_xfm_file_path"), "anat_to_func_linear_xfm": (inputspec, "anat_to_func_linear_xfm_file_path"), "mni_to_anat_linear_xfm": (inputspec, "mni_to_anat_linear_xfm_file_path"), "anat_to_mni_linear_xfm": (inputspec, "anat_to_mni_linear_xfm_file_path"), }, "DVARS": (inputspec, "dvars_file_path"), "FD_J": (inputspec, "framewise_displacement_j_file_path"), "FD_P": (inputspec, "framewise_displacement_p_file_path"), "Motion": (inputspec, "motion_parameters_file_path"), } # Regressor map to simplify construction of the needed regressors regressors = { "GreyMatter": ["grey_matter_summary_file_path", (), "ort"], "WhiteMatter": ["white_matter_summary_file_path", (), "ort"], "CerebrospinalFluid": ["csf_summary_file_path", (), "ort"], "aCompCor": ["acompcor_file_path", (), "ort"], "tCompCor": ["tcompcor_file_path", (), "ort"], "GlobalSignal": ["global_summary_file_path", (), "ort"], "Custom": ["custom_file_paths", (), "ort"], "VoxelCustom": ["custom_file_paths", (), "dsort"], "DVARS": ["dvars_file_path", (), "ort"], "FD_J": ["framewise_displacement_j_file_path", (), "ort"], "FD_P": ["framewise_displacement_p_file_path", (), "ort"], "Motion": ["motion_parameters_file_path", (), "ort"], } motion = ["DVARS", "FD_J", "FD_P", "Motion"] derived = ["tCompCor", "aCompCor"] tissues = ["GreyMatter", "WhiteMatter", "CerebrospinalFluid"] for regressor_type, regressor_resource in regressors.items(): if regressor_type not in nuisance_selectors: continue regressor_selector = nuisance_selectors[regressor_type] if regressor_type == "Custom": custom_ort_check_s3_nodes = [] custom_dsort_check_s3_nodes = [] custom_dsort_convolve_nodes = [] for file_num, custom_regressor in enumerate( sorted(regressor_selector, key=lambda c: c["file"]) ): custom_regressor_file = custom_regressor["file"] custom_check_s3_node = pe.Node( Function( input_names=["file_path", "creds_path", "dl_dir", "img_type"], output_names=["local_path"], function=check_for_s3, as_module=True, ), name=f"custom_check_for_s3_{name}_{file_num}", ) custom_check_s3_node.inputs.set( file_path=custom_regressor_file, img_type="func" ) if custom_regressor_file.endswith( ".nii.gz" ) or custom_regressor_file.endswith(".nii"): if custom_regressor.get("convolve"): custom_dsort_convolve_nodes += [custom_check_s3_node] else: custom_dsort_check_s3_nodes += [custom_check_s3_node] else: custom_ort_check_s3_nodes += [custom_check_s3_node] if len(custom_ort_check_s3_nodes) > 0: custom_ort_merge = pe.Node( util.Merge(len(custom_ort_check_s3_nodes)), name="custom_ort_merge" ) for i, custom_check_s3_node in enumerate(custom_ort_check_s3_nodes): nuisance_wf.connect( custom_check_s3_node, "local_path", custom_ort_merge, f"in{i + 1}", ) pipeline_resource_pool["custom_ort_file_paths"] = ( custom_ort_merge, "out", ) regressors["Custom"][1] = pipeline_resource_pool[ "custom_ort_file_paths" ] if len(custom_dsort_convolve_nodes) > 0: custom_dsort_convolve_merge = pe.Node( util.Merge(len(custom_dsort_convolve_nodes)), name="custom_dsort_convolve_merge", ) for i, custom_check_s3_node in enumerate(custom_dsort_convolve_nodes): nuisance_wf.connect( custom_check_s3_node, "local_path", custom_dsort_convolve_merge, f"in{i + 1}", ) if len(custom_dsort_check_s3_nodes) > 0: images_to_merge = len(custom_dsort_check_s3_nodes) if len(custom_dsort_convolve_nodes) > 0: images_to_merge += 1 custom_dsort_merge = pe.Node( util.Merge(images_to_merge), name="custom_dsort_merge" ) for i, custom_check_s3_node in enumerate(custom_dsort_check_s3_nodes): nuisance_wf.connect( custom_check_s3_node, "local_path", custom_dsort_merge, f"in{i + 1}", ) if len(custom_dsort_convolve_nodes) > 0: nuisance_wf.connect( custom_dsort_convolve_merge, "out", custom_dsort_merge, f"in{i + 1}", ) pipeline_resource_pool["custom_dsort_file_paths"] = ( custom_dsort_merge, "out", ) regressors["VoxelCustom"][1] = pipeline_resource_pool[ "custom_dsort_file_paths" ] continue if regressor_type in motion: regressor_resource[1] = pipeline_resource_pool[regressor_type] continue # Set summary method for tCompCor and aCompCor if regressor_type in derived: if "summary" not in regressor_selector: regressor_selector["summary"] = {} if not isinstance(regressor_selector["summary"], dict): msg = ( "Regressor {0} requires PC summary method, " "but {1} specified".format( regressor_type, regressor_selector["summary"] ) ) raise ValueError(msg) if not regressor_selector["summary"].get("components"): regressor_selector["summary"]["components"] = 1 # If regressor is not present, build up the regressor if not regressor_resource[1]: # We don't have the regressor, look for it in the resource pool, # build a corresponding key, this is seperated in to a mask key # and an extraction key, which when concatenated provide the # resource key for the regressor regressor_descriptor = {"tissue": regressor_type} if regressor_type == "aCompCor": if not regressor_selector.get("tissues"): msg = "Tissue type required for aCompCor, but none specified" raise ValueError(msg) regressor_descriptor = {"tissue": regressor_selector["tissues"]} if regressor_type == "tCompCor": if not regressor_selector.get("threshold"): msg = "Threshold required for tCompCor, but none specified." raise ValueError(msg) regressor_descriptor = { "tissue": "FunctionalVariance-{}".format( regressor_selector["threshold"] ) } if regressor_selector.get("by_slice"): regressor_descriptor["tissue"] += "-BySlice" else: regressor_selector["by_slice"] = False if regressor_selector.get("erode_mask_mm"): erosion_mm = regressor_selector["erode_mask_mm"] else: erosion_mm = False if regressor_selector.get("degree"): degree = regressor_selector["degree"] else: degree = 1 temporal_wf = temporal_variance_mask( regressor_selector["threshold"], by_slice=regressor_selector["by_slice"], erosion=erosion_mm, degree=degree, ) nuisance_wf.connect( *( pipeline_resource_pool["Functional"] + (temporal_wf, "inputspec.functional_file_path") ) ) if erosion_mm: # TODO: in func/anat space # transform eroded anat brain mask to functional space # convert_xfm anat_to_func_linear_xfm = pe.Node( interface=fsl.ConvertXFM(), name="anat_to_func_linear_xfm" ) anat_to_func_linear_xfm.inputs.invert_xfm = True nuisance_wf.connect( *( pipeline_resource_pool["Transformations"][ "func_to_anat_linear_xfm" ] + (anat_to_func_linear_xfm, "in_file") ) ) # flirt anat_to_func_mask = pe.Node( interface=fsl.FLIRT(), name="Functional_eroded_mask" ) anat_to_func_mask.inputs.output_type = "NIFTI_GZ" anat_to_func_mask.inputs.apply_xfm = True anat_to_func_mask.inputs.interp = "nearestneighbour" nuisance_wf.connect( anat_to_func_linear_xfm, "out_file", anat_to_func_mask, "in_matrix_file", ) nuisance_wf.connect( *( pipeline_resource_pool["AnatomicalErodedMask"] + (anat_to_func_mask, "in_file") ) ) nuisance_wf.connect( *( pipeline_resource_pool["GlobalSignal"] + (anat_to_func_mask, "reference") ) ) # connect workflow nuisance_wf.connect( anat_to_func_mask, "out_file", temporal_wf, "inputspec.mask_file_path", ) else: nuisance_wf.connect( *( pipeline_resource_pool["GlobalSignal"] + (temporal_wf, "inputspec.mask_file_path") ) ) pipeline_resource_pool[regressor_descriptor["tissue"]] = ( temporal_wf, "outputspec.mask", ) if not isinstance(regressor_selector["summary"], dict): regressor_selector["summary"] = { "filter": regressor_selector["summary"], "method": regressor_selector["summary"], } # Add selector into regressor description if regressor_selector.get("extraction_resolution"): regressor_descriptor["resolution"] = ( str(regressor_selector["extraction_resolution"]) + "mm" ) elif regressor_type in tissues: regressor_selector["extraction_resolution"] = "Functional" regressor_descriptor["resolution"] = "Functional" if regressor_selector.get("erode_mask"): regressor_descriptor["erosion"] = "Eroded" if not regressor_selector.get("summary"): msg = ( f"Summary method required for {regressor_type}, but none specified" ) raise ValueError(msg) regressor_descriptor["extraction"] = regressor_selector["summary"]["method"] if regressor_descriptor["extraction"] in ["DetrendPC", "PC"]: if not regressor_selector["summary"].get("components"): msg = "Summary method PC requires components, but received none." raise ValueError(msg) regressor_descriptor["extraction"] += "_{0}".format( regressor_selector["summary"]["components"] ) if not isinstance(regressor_descriptor["tissue"], list): regressor_descriptor["tissue"] = [regressor_descriptor["tissue"]] if ( regressor_selector.get("extraction_resolution") and regressor_selector["extraction_resolution"] != "Functional" ): functional_at_resolution_key = "Functional_{0}mm".format( regressor_selector["extraction_resolution"] ) anatomical_at_resolution_key = "Anatomical_{0}mm".format( regressor_selector["extraction_resolution"] ) if anatomical_at_resolution_key not in pipeline_resource_pool: anat_resample = pe.Node( interface=fsl.FLIRT(), name=f"{anatomical_at_resolution_key}_flirt", mem_gb=3.63, mem_x=(3767129957844731 / 1208925819614629174706176, "in_file"), ) anat_resample.inputs.apply_isoxfm = regressor_selector[ "extraction_resolution" ] nuisance_wf.connect( *( pipeline_resource_pool["Anatomical"] + (anat_resample, "in_file") ) ) nuisance_wf.connect( *( pipeline_resource_pool["Anatomical"] + (anat_resample, "reference") ) ) pipeline_resource_pool[anatomical_at_resolution_key] = ( anat_resample, "out_file", ) if functional_at_resolution_key not in pipeline_resource_pool: func_resample = pe.Node( interface=fsl.FLIRT(), name=f"{functional_at_resolution_key}_flirt", mem_gb=0.521, mem_x=(4394984950818853 / 302231454903657293676544, "in_file"), ) func_resample.inputs.apply_xfm = True nuisance_wf.connect( *( pipeline_resource_pool["Transformations"][ "func_to_anat_linear_xfm" ] + (func_resample, "in_matrix_file") ) ) nuisance_wf.connect( *( pipeline_resource_pool["Functional"] + (func_resample, "in_file") ) ) nuisance_wf.connect( *( pipeline_resource_pool[anatomical_at_resolution_key] + (func_resample, "reference") ) ) pipeline_resource_pool[functional_at_resolution_key] = ( func_resample, "out_file", ) # Create merger to summarize the functional timeseries regressor_mask_file_resource_keys = [] for tissue in regressor_descriptor["tissue"]: # Ignore non tissue masks if tissue not in tissues and not tissue.startswith( "FunctionalVariance" ): regressor_mask_file_resource_keys += [tissue] continue tissue_regressor_descriptor = regressor_descriptor.copy() tissue_regressor_descriptor["tissue"] = tissue # Generate resource masks ( pipeline_resource_pool, regressor_mask_file_resource_key, ) = generate_summarize_tissue_mask( nuisance_wf, pipeline_resource_pool, tissue_regressor_descriptor, regressor_selector, csf_mask_exist, use_ants=use_ants, ventricle_mask_exist=ventricle_mask_exist, all_bold=all_bold, ) regressor_mask_file_resource_keys += [regressor_mask_file_resource_key] # Keep tissues ordered, to avoid duplicates regressor_mask_file_resource_keys = sorted( regressor_mask_file_resource_keys ) # Create key for the final regressors regressor_file_resource_key = "_".join( [ "-".join(regressor_descriptor[key]) if isinstance(regressor_descriptor[key], list) else regressor_descriptor[key] for key in ["tissue", "resolution", "erosion", "extraction"] if key in regressor_descriptor ] ) if regressor_file_resource_key not in pipeline_resource_pool: # Merge mask paths to extract voxel timeseries merge_masks_paths = pe.Node( util.Merge(len(regressor_mask_file_resource_keys)), name=f"{regressor_type}_merge_masks", ) for i, regressor_mask_file_resource_key in enumerate( regressor_mask_file_resource_keys ): node, node_output = pipeline_resource_pool[ regressor_mask_file_resource_key ] nuisance_wf.connect( node, node_output, merge_masks_paths, f"in{i + 1}" ) union_masks_paths = pe.Node( MaskTool(outputtype="NIFTI_GZ"), name=f"{regressor_type}_union_masks", mem_gb=2.1, mem_x=(1708448960473801 / 1208925819614629174706176, "in_file"), ) nuisance_wf.connect( merge_masks_paths, "out", union_masks_paths, "in_file" ) functional_key = "Functional" if ( regressor_selector.get("extraction_resolution") and regressor_selector["extraction_resolution"] != "Functional" ): functional_key = "Functional_{}mm".format( regressor_selector["extraction_resolution"] ) summary_filter = regressor_selector["summary"].get("filter", "") summary_filter_input = pipeline_resource_pool[functional_key] summary_method = regressor_selector["summary"]["method"] summary_method_input = pipeline_resource_pool[functional_key] if "DetrendPC" in summary_method: compcor_imports = [ "import os", "import scipy.signal as signal", "import nibabel as nib", "import numpy as np", "from CPAC.utils import safe_shape", ] compcor_node = pe.Node( Function( input_names=[ "data_filename", "num_components", "mask_filename", ], output_names=["compcor_file"], function=calc_compcor_components, imports=compcor_imports, ), name=f"{regressor_type}_DetrendPC", mem_gb=0.4, mem_x=( 3811976743057169 / 151115727451828646838272, "data_filename", ), ) compcor_node.inputs.num_components = regressor_selector["summary"][ "components" ] nuisance_wf.connect( summary_method_input[0], summary_method_input[1], compcor_node, "data_filename", ) nuisance_wf.connect( union_masks_paths, "out_file", compcor_node, "mask_filename" ) summary_method_input = (compcor_node, "compcor_file") else: if "cosine" in summary_filter: cosfilter_imports = [ "import os", "import numpy as np", "import nibabel as nib", "from nipype import logging", ] cosfilter_node = pe.Node( Function( input_names=["input_image_path", "timestep"], output_names=["cosfiltered_img"], function=cosine_filter, imports=cosfilter_imports, ), name=f"{regressor_type}_cosine_filter", mem_gb=8.0, throttle=True, ) nuisance_wf.connect( summary_filter_input[0], summary_filter_input[1], cosfilter_node, "input_image_path", ) tr_string2float_node = pe.Node( Function( input_names=["tr"], output_names=["tr_float"], function=TR_string_to_float, ), name=f"{regressor_type}_tr_string2float", ) nuisance_wf.connect(inputspec, "tr", tr_string2float_node, "tr") nuisance_wf.connect( tr_string2float_node, "tr_float", cosfilter_node, "timestep" ) summary_method_input = (cosfilter_node, "cosfiltered_img") if "Detrend" in summary_method: detrend_node = pe.Node( afni.Detrend(args="-polort 1", outputtype="NIFTI"), name=f"{regressor_type}_detrend", ) nuisance_wf.connect( summary_method_input[0], summary_method_input[1], detrend_node, "in_file", ) summary_method_input = (detrend_node, "out_file") if "Norm" in summary_method: l2norm_node = pe.Node( afni.TStat(args="-l2norm", outputtype="NIFTI"), name=f"{regressor_type}_l2norm", ) nuisance_wf.connect( summary_method_input[0], summary_method_input[1], l2norm_node, "in_file", ) nuisance_wf.connect( union_masks_paths, "out_file", l2norm_node, "mask" ) norm_node = pe.Node( afni.Calc(expr="a/b", outputtype="NIFTI"), name=f"{regressor_type}_norm", mem_gb=1.7, mem_x=( 1233286593342025 / 151115727451828646838272, "in_file_a", ), ) nuisance_wf.connect( summary_method_input[0], summary_method_input[1], norm_node, "in_file_a", ) nuisance_wf.connect( l2norm_node, "out_file", norm_node, "in_file_b" ) summary_method_input = (norm_node, "out_file") if "Mean" in summary_method: mean_node = pe.Node( afni.ROIStats(quiet=False, args="-1Dformat"), name=f"{regressor_type}_mean", mem_gb=5.0, ) nuisance_wf.connect( summary_method_input[0], summary_method_input[1], mean_node, "in_file", ) nuisance_wf.connect( union_masks_paths, "out_file", mean_node, "mask_file" ) summary_method_input = (mean_node, "out_file") if "PC" in summary_method: std_node = pe.Node( afni.TStat(args="-nzstdev", outputtype="NIFTI"), name=f"{regressor_type}_std", ) nuisance_wf.connect( summary_method_input[0], summary_method_input[1], std_node, "in_file", ) nuisance_wf.connect( union_masks_paths, "out_file", std_node, "mask" ) standardized_node = pe.Node( afni.Calc(expr="a/b", outputtype="NIFTI"), name=f"{regressor_type}_standardized", ) nuisance_wf.connect( summary_method_input[0], summary_method_input[1], standardized_node, "in_file_a", ) nuisance_wf.connect( std_node, "out_file", standardized_node, "in_file_b" ) pc_node = pe.Node( PC( args="-vmean -nscale", pcs=regressor_selector["summary"]["components"], outputtype="NIFTI_GZ", ), name=f"{regressor_type}_pc", ) nuisance_wf.connect( standardized_node, "out_file", pc_node, "in_file" ) nuisance_wf.connect( union_masks_paths, "out_file", pc_node, "mask" ) summary_method_input = (pc_node, "pcs_file") pipeline_resource_pool[regressor_file_resource_key] = ( summary_method_input ) # Add it to internal resource pool regressor_resource[1] = pipeline_resource_pool[ regressor_file_resource_key ] # Build regressors and combine them into a single file build_nuisance_regressors = pe.Node( Function( input_names=[ "functional_file_path", "selector", "grey_matter_summary_file_path", "white_matter_summary_file_path", "csf_summary_file_path", "acompcor_file_path", "tcompcor_file_path", "global_summary_file_path", "motion_parameters_file_path", "custom_file_paths", "censor_file_path", ], output_names=["out_file", "censor_indices"], function=gather_nuisance, as_module=True, ), name="build_nuisance_regressors", ) nuisance_wf.connect( inputspec, "functional_file_path", build_nuisance_regressors, "functional_file_path", ) build_nuisance_regressors.inputs.selector = nuisance_selectors # Check for any regressors to combine into files has_nuisance_regressors = any( regressor_node for regressor_key, ( regressor_arg, regressor_node, regressor_target, ) in regressors.items() if regressor_target == "ort" ) if has_nuisance_regressors: for regressor_key, ( regressor_arg, regressor_node, regressor_target, ) in regressors.items(): if regressor_target != "ort": continue if regressor_key in nuisance_selectors: nuisance_wf.connect( regressor_node[0], regressor_node[1], build_nuisance_regressors, regressor_arg, ) # Check for any regressors to combine into files has_voxel_nuisance_regressors = any( regressor_node for regressor_key, ( regressor_arg, regressor_node, regressor_target, ) in regressors.items() if regressor_target == "dsort" ) if has_voxel_nuisance_regressors: voxel_nuisance_regressors = [ (regressor_key, (regressor_arg, regressor_node, regressor_target)) for regressor_key, ( regressor_arg, regressor_node, regressor_target, ) in regressors.items() if regressor_target == "dsort" ] voxel_nuisance_regressors_merge = pe.Node( util.Merge(len(voxel_nuisance_regressors)), name="voxel_nuisance_regressors_merge", ) for i, ( regressor_key, (regressor_arg, regressor_node, regressor_target), ) in enumerate(voxel_nuisance_regressors): if regressor_target != "dsort": continue node, node_output = regressor_node nuisance_wf.connect( node, node_output, voxel_nuisance_regressors_merge, f"in{i + 1}" ) nuisance_wf.connect( [ ( build_nuisance_regressors, outputspec, [ ("out_file", "regressors_file_path"), ("censor_indices", "censor_indices"), ], ) ] ) return nuisance_wf
def create_nuisance_regression_workflow(nuisance_selectors, name="nuisance_regression"): inputspec = pe.Node( util.IdentityInterface( fields=[ "selector", "functional_file_path", "functional_brain_mask_file_path", "regressor_file", "fd_j_file_path", "fd_p_file_path", "dvars_file_path", ] ), name="inputspec", ) outputspec = pe.Node( util.IdentityInterface(fields=["residual_file_path"]), name="outputspec" ) nuisance_wf = pe.Workflow(name=name) if nuisance_selectors.get("Censor"): censor_methods = ["Kill", "Zero", "Interpolate", "SpikeRegression"] censor_selector = nuisance_selectors.get("Censor") if censor_selector.get("method") not in censor_methods: msg = ( "Improper censoring method specified ({0}), " "should be one of {1}.".format( censor_selector.get("method"), censor_methods ) ) raise ValueError(msg) find_censors = pe.Node( Function( input_names=[ "fd_j_file_path", "fd_j_threshold", "fd_p_file_path", "fd_p_threshold", "dvars_file_path", "dvars_threshold", "number_of_previous_trs_to_censor", "number_of_subsequent_trs_to_censor", ], output_names=["out_file"], function=find_offending_time_points, as_module=True, ), name="find_offending_time_points", ) if not censor_selector.get("thresholds"): msg = "Censoring requested, but thresh_metric not provided." raise ValueError(msg) for threshold in censor_selector["thresholds"]: if "type" not in threshold or threshold["type"] not in [ "DVARS", "FD_J", "FD_P", ]: msg = "Censoring requested, but with invalid threshold type." raise ValueError(msg) if "value" not in threshold: msg = "Censoring requested, but threshold not provided." raise ValueError(msg) if threshold["type"] == "FD_J": find_censors.inputs.fd_j_threshold = threshold["value"] nuisance_wf.connect( inputspec, "fd_j_file_path", find_censors, "fd_j_file_path" ) if threshold["type"] == "FD_P": find_censors.inputs.fd_p_threshold = threshold["value"] nuisance_wf.connect( inputspec, "fd_p_file_path", find_censors, "fd_p_file_path" ) if threshold["type"] == "DVARS": find_censors.inputs.dvars_threshold = threshold["value"] nuisance_wf.connect( inputspec, "dvars_file_path", find_censors, "dvars_file_path" ) if ( censor_selector.get("number_of_previous_trs_to_censor") and censor_selector["method"] != "SpikeRegression" ): find_censors.inputs.number_of_previous_trs_to_censor = censor_selector[ "number_of_previous_trs_to_censor" ] else: find_censors.inputs.number_of_previous_trs_to_censor = 0 if ( censor_selector.get("number_of_subsequent_trs_to_censor") and censor_selector["method"] != "SpikeRegression" ): find_censors.inputs.number_of_subsequent_trs_to_censor = censor_selector[ "number_of_subsequent_trs_to_censor" ] else: find_censors.inputs.number_of_subsequent_trs_to_censor = 0 # Use 3dTproject to perform nuisance variable regression nuisance_regression = pe.Node( interface=afni.TProject(), name="nuisance_regression", mem_gb=1.716, mem_x=(6278549929741219 / 604462909807314587353088, "in_file"), ) nuisance_regression.inputs.out_file = "residuals.nii.gz" nuisance_regression.inputs.outputtype = "NIFTI_GZ" nuisance_regression.inputs.norm = False if nuisance_selectors.get("Censor"): if nuisance_selectors["Censor"]["method"] == "SpikeRegression": nuisance_wf.connect(find_censors, "out_file", nuisance_regression, "censor") else: if nuisance_selectors["Censor"]["method"] == "Interpolate": nuisance_regression.inputs.cenmode = "NTRP" else: nuisance_regression.inputs.cenmode = nuisance_selectors["Censor"][ "method" ].upper() nuisance_wf.connect(find_censors, "out_file", nuisance_regression, "censor") if nuisance_selectors.get("PolyOrt"): if not nuisance_selectors["PolyOrt"].get("degree"): msg = "Polynomial orthogonalization requested, but degree not provided." raise ValueError(msg) nuisance_regression.inputs.polort = nuisance_selectors["PolyOrt"]["degree"] else: nuisance_regression.inputs.polort = 0 nuisance_wf.connect( inputspec, "functional_file_path", nuisance_regression, "in_file" ) nuisance_wf.connect( inputspec, "functional_brain_mask_file_path", nuisance_regression, "mask" ) if nuisance_selectors.get("Custom"): if nuisance_selectors["Custom"][0].get("file"): if nuisance_selectors["Custom"][0]["file"].endswith( ".nii" ) or nuisance_selectors["Custom"][0]["file"].endswith(".nii.gz"): nuisance_wf.connect( inputspec, "regressor_file", nuisance_regression, "dsort" ) else: nuisance_wf.connect( inputspec, "regressor_file", nuisance_regression, "ort" ) else: nuisance_wf.connect(inputspec, "regressor_file", nuisance_regression, "ort") elif not ("Bandpass" in nuisance_selectors and len(nuisance_selectors.keys()) == 1): nuisance_wf.connect(inputspec, "regressor_file", nuisance_regression, "ort") nuisance_wf.connect( nuisance_regression, "out_file", outputspec, "residual_file_path" ) return nuisance_wf def filtering_bold_and_regressors( nuisance_selectors, name="filtering_bold_and_regressors" ): inputspec = pe.Node( util.IdentityInterface( fields=[ "functional_file_path", "regressors_file_path", "functional_brain_mask_file_path", "nuisance_selectors", "tr", ] ), name="inputspec", ) outputspec = pe.Node( util.IdentityInterface(fields=["residual_file_path", "residual_regressor"]), name="outputspec", ) filtering_wf = pe.Workflow(name=name) bandpass_selector = nuisance_selectors.get("Bandpass") if bandpass_selector.get("method"): bandpass_method = bandpass_selector.get("method") else: bandpass_method = "default" if bandpass_method == "default": frequency_filter = pe.Node( Function( input_names=[ "realigned_file", "regressor_file", "bandpass_freqs", "sample_period", ], output_names=["bandpassed_file", "regressor_file"], function=bandpass_voxels, as_module=True, ), name="frequency_filter", mem_gb=0.5, mem_x=(3811976743057169 / 151115727451828646838272, "realigned_file"), ) frequency_filter.inputs.bandpass_freqs = [ bandpass_selector.get("bottom_frequency"), bandpass_selector.get("top_frequency"), ] filtering_wf.connect( inputspec, "functional_file_path", frequency_filter, "realigned_file" ) filtering_wf.connect( inputspec, "regressors_file_path", frequency_filter, "regressor_file" ) filtering_wf.connect( frequency_filter, "bandpassed_file", outputspec, "residual_file_path" ) filtering_wf.connect( frequency_filter, "regressor_file", outputspec, "residual_regressor" ) elif bandpass_method == "AFNI": bandpass_ts = pe.Node(interface=afni.Bandpass(), name="bandpass_ts") bandpass_ts.inputs.highpass = bandpass_selector.get("bottom_frequency") bandpass_ts.inputs.lowpass = bandpass_selector.get("top_frequency") bandpass_ts.inputs.outputtype = "NIFTI_GZ" tr_string2float_node = pe.Node( Function( input_names=["tr"], output_names=["tr_float"], function=TR_string_to_float, ), name="tr_string2float", ) filtering_wf.connect(inputspec, "tr", tr_string2float_node, "tr") filtering_wf.connect(tr_string2float_node, "tr_float", bandpass_ts, "tr") filtering_wf.connect(inputspec, "functional_file_path", bandpass_ts, "in_file") filtering_wf.connect( inputspec, "functional_brain_mask_file_path", bandpass_ts, "mask" ) filtering_wf.connect(bandpass_ts, "out_file", outputspec, "residual_file_path") bandpass_regressor = pe.Node( Function( input_names=["in_file", "highpass", "lowpass", "tr"], output_names=["out_file"], function=afni_1dBandpass, ), name="bandpass_regressor", ) bandpass_regressor.inputs.highpass = bandpass_selector.get("bottom_frequency") bandpass_regressor.inputs.lowpass = bandpass_selector.get("top_frequency") filtering_wf.connect( inputspec, "regressors_file_path", bandpass_regressor, "in_file" ) filtering_wf.connect(tr_string2float_node, "tr_float", bandpass_regressor, "tr") filtering_wf.connect( bandpass_regressor, "out_file", outputspec, "residual_regressor" ) return filtering_wf @nodeblock( name="ICA_AROMA_FSLreg", config=["nuisance_corrections", "1-ICA-AROMA"], switch=["run"], inputs=[ "desc-preproc_bold", "from-bold_to-T1w_mode-image_desc-linear_xfm", "from-T1w_to-template_mode-image_xfm", ], outputs=["desc-preproc_bold", "desc-cleaned_bold"], ) def ICA_AROMA_FSLreg(wf, cfg, strat_pool, pipe_num, opt=None): xfm_prov = strat_pool.get_cpac_provenance("from-T1w_to-template_mode-image_xfm") reg_tool = check_prov_for_regtool(xfm_prov) if reg_tool != "fsl": return (wf, None) aroma_preproc = create_aroma(tr=None, wf_name=f"create_aroma_{pipe_num}") aroma_preproc.inputs.params.denoise_type = cfg.nuisance_corrections["1-ICA-AROMA"][ "denoising_type" ] node, out = strat_pool.get_data("desc-preproc_bold") wf.connect(node, out, aroma_preproc, "inputspec.denoise_file") node, out = strat_pool.get_data("from-bold_to-T1w_mode-image_desc-linear_xfm") wf.connect(node, out, aroma_preproc, "inputspec.mat_file") node, out = strat_pool.get_data("from-T1w_to-template_mode-image_xfm") wf.connect(node, out, aroma_preproc, "inputspec.fnirt_warp_file") if cfg.nuisance_corrections["1-ICA-AROMA"]["denoising_type"] == "nonaggr": node, out = (aroma_preproc, "outputspec.nonaggr_denoised_file") elif cfg.nuisance_corrections["1-ICA-AROMA"]["denoising_type"] == "aggr": node, out = (aroma_preproc, "outputspec.aggr_denoised_file") outputs = {"desc-preproc_bold": (node, out), "desc-cleaned_bold": (node, out)} return (wf, outputs) @nodeblock( name="ICA_AROMA_ANTsreg", config=["nuisance_corrections", "1-ICA-AROMA"], switch=["run"], inputs=[ ( "desc-preproc_bold", "sbref", "from-bold_to-template_mode-image_xfm", "from-template_to-bold_mode-image_xfm", ), "T1w-brain-template-funcreg", ], outputs=["desc-preproc_bold", "desc-cleaned_bold"], ) def ICA_AROMA_ANTsreg(wf, cfg, strat_pool, pipe_num, opt=None): xfm_prov = strat_pool.get_cpac_provenance("from-bold_to-template_mode-image_xfm") reg_tool = check_prov_for_regtool(xfm_prov) if reg_tool != "ants": return (wf, None) num_cpus = cfg.pipeline_setup["system_config"]["max_cores_per_participant"] num_ants_cores = cfg.pipeline_setup["system_config"]["num_ants_threads"] aroma_preproc = create_aroma(tr=None, wf_name=f"create_aroma_{pipe_num}") aroma_preproc.inputs.params.denoise_type = cfg.nuisance_corrections["1-ICA-AROMA"][ "denoising_type" ] wf, outputs = warp_timeseries_to_T1template(wf, cfg, strat_pool, pipe_num) for key, val in outputs.items(): node, out = val wf.connect(node, out, aroma_preproc, "inputspec.denoise_file") apply_xfm = apply_transform( f"ICA-AROMA_ANTs_template_to_bold_{pipe_num}", reg_tool=reg_tool, time_series=True, num_cpus=num_cpus, num_ants_cores=num_ants_cores, ) apply_xfm.inputs.inputspec.interpolation = cfg.registration_workflows[ "functional_registration" ]["func_registration_to_template"]["ANTs_pipelines"]["interpolation"] if cfg.nuisance_corrections["1-ICA-AROMA"]["denoising_type"] == "nonaggr": node, out = (aroma_preproc, "outputspec.nonaggr_denoised_file") elif cfg.nuisance_corrections["1-ICA-AROMA"]["denoising_type"] == "aggr": node, out = (aroma_preproc, "outputspec.aggr_denoised_file") wf.connect(node, out, apply_xfm, "inputspec.input_image") node, out = strat_pool.get_data("sbref") wf.connect(node, out, apply_xfm, "inputspec.reference") node, out = strat_pool.get_data("from-template_to-bold_mode-image_xfm") wf.connect(node, out, apply_xfm, "inputspec.transform") outputs = { "desc-preproc_bold": (apply_xfm, "outputspec.output_image"), "desc-cleaned_bold": (apply_xfm, "outputspec.output_image"), } return (wf, outputs) @nodeblock( name="ICA_AROMA_FSLEPIreg", switch=[ ["nuisance_corrections", "1-ICA-AROMA", "run"], [ "registration_workflows", "functional_registration", "EPI_registration", "run", ], ], inputs=[ ["desc-brain_bold", "desc-motion_bold", "desc-preproc_bold", "bold"], "from-bold_to-EPItemplate_mode-image_xfm", ], outputs=["desc-preproc_bold", "desc-cleaned_bold"], ) def ICA_AROMA_FSLEPIreg(wf, cfg, strat_pool, pipe_num, opt=None): xfm_prov = strat_pool.get_cpac_provenance("from-bold_to-EPItemplate_mode-image_xfm") reg_tool = check_prov_for_regtool(xfm_prov) if reg_tool != "fsl": return (wf, None) aroma_preproc = create_aroma(tr=None, wf_name=f"create_aroma_{pipe_num}") aroma_preproc.inputs.params.denoise_type = cfg.nuisance_corrections["1-ICA-AROMA"][ "denoising_type" ] node, out = strat_pool.get_data( ["desc-brain_bold", "desc-motion_bold", "desc-preproc_bold", "bold"] ) wf.connect(node, out, aroma_preproc, "inputspec.denoise_file") node, out = strat_pool.get_data("from-bold_to-EPItemplate_mode-image_xfm") wf.connect(node, out, aroma_preproc, "inputspec.fnirt_warp_file") if cfg.nuisance_corrections["1-ICA-AROMA"]["denoising_type"] == "nonaggr": node, out = (aroma_preproc, "outputspec.nonaggr_denoised_file") elif cfg.nuisance_corrections["1-ICA-AROMA"]["denoising_type"] == "aggr": node, out = (aroma_preproc, "outputspec.aggr_denoised_file") outputs = {"desc-preproc_bold": (node, out), "desc-cleaned_bold": (node, out)} return (wf, outputs) @nodeblock( name="ICA_AROMA_ANTsEPIreg", switch=[ ["nuisance_corrections", "1-ICA-AROMA", "run"], [ "registration_workflows", "functional_registration", "EPI_registration", "run", ], ], inputs=[ ( "desc-preproc_bold", "sbref", "from-bold_to-EPItemplate_mode-image_xfm", "from-EPItemplate_to-bold_mode-image_xfm", ), "EPI-template", ], outputs=["desc-preproc_bold", "desc-cleaned_bold"], ) def ICA_AROMA_ANTsEPIreg(wf, cfg, strat_pool, pipe_num, opt=None): xfm_prov = strat_pool.get_cpac_provenance("from-bold_to-EPItemplate_mode-image_xfm") reg_tool = check_prov_for_regtool(xfm_prov) if reg_tool != "ants": return (wf, None) num_cpus = cfg.pipeline_setup["system_config"]["max_cores_per_participant"] num_ants_cores = cfg.pipeline_setup["system_config"]["num_ants_threads"] aroma_preproc = create_aroma(tr=None, wf_name=f"create_aroma_{pipe_num}") aroma_preproc.inputs.params.denoise_type = cfg.nuisance_corrections["1-ICA-AROMA"][ "denoising_type" ] wf, outputs = warp_timeseries_to_EPItemplate(wf, cfg, strat_pool, pipe_num) for key, val in outputs.items(): node, out = val wf.connect(node, out, aroma_preproc, "inputspec.denoise_file") apply_xfm = apply_transform( f"ICA-AROMA_ANTs_EPItemplate_to_bold_{pipe_num}", reg_tool=reg_tool, time_series=True, num_cpus=num_cpus, num_ants_cores=num_ants_cores, ) apply_xfm.inputs.inputspec.interpolation = cfg.registration_workflows[ "functional_registration" ]["func_registration_to_template"]["ANTs_pipelines"]["interpolation"] if cfg.nuisance_corrections["1-ICA-AROMA"]["denoising_type"] == "nonaggr": node, out = (aroma_preproc, "outputspec.nonaggr_denoised_file") elif cfg.nuisance_corrections["1-ICA-AROMA"]["denoising_type"] == "aggr": node, out = (aroma_preproc, "outputspec.aggr_denoised_file") wf.connect(node, out, apply_xfm, "inputspec.input_image") node, out = strat_pool.get_data("sbref") wf.connect(node, out, apply_xfm, "inputspec.reference") node, out = strat_pool.get_data("from-EPItemplate_to-bold_mode-image_xfm") wf.connect(node, out, apply_xfm, "inputspec.transform") outputs = { "desc-preproc_bold": (apply_xfm, "outputspec.output_image"), "desc-cleaned_bold": (apply_xfm, "outputspec.output_image"), } return (wf, outputs) @nodeblock( name="erode_mask_T1w", switch=[ ["nuisance_corrections", "2-nuisance_regression", "create_regressors"], [ "nuisance_corrections", "2-nuisance_regression", "regressor_masks", "erode_anatomical_brain_mask", "run", ], ], inputs=[ ("space-T1w_desc-brain_mask", ["label-CSF_desc-preproc_mask", "label-CSF_mask"]) ], outputs=["space-T1w_desc-eroded_mask"], ) def erode_mask_T1w(wf, cfg, strat_pool, pipe_num, opt=None): erode = erode_mask(f"erode_T1w_mask_{pipe_num}", segmentmap=False) erode.inputs.inputspec.mask_erode_mm = cfg.nuisance_corrections[ "2-nuisance_regression" ]["regressor_masks"]["erode_anatomical_brain_mask"]["brain_mask_erosion_mm"] erode.inputs.inputspec.erode_prop = cfg.nuisance_corrections[ "2-nuisance_regression" ]["regressor_masks"]["erode_anatomical_brain_mask"]["brain_mask_erosion_prop"] node, out = strat_pool.get_data("space-T1w_desc-brain_mask") wf.connect(node, out, erode, "inputspec.brain_mask") node, out = strat_pool.get_data(["label-CSF_desc-preproc_mask", "label-CSF_mask"]) wf.connect(node, out, erode, "inputspec.mask") outputs = {"space-T1w_desc-eroded_mask": (erode, "outputspec.eroded_mask")} return (wf, outputs) @nodeblock( name="erode_mask_CSF", switch=[ ["nuisance_corrections", "2-nuisance_regression", "create_regressors"], [ "nuisance_corrections", "2-nuisance_regression", "regressor_masks", "erode_csf", "run", ], ], inputs=[ (["label-CSF_desc-preproc_mask", "label-CSF_mask"], "space-T1w_desc-brain_mask") ], outputs=["label-CSF_desc-eroded_mask"], ) def erode_mask_CSF(wf, cfg, strat_pool, pipe_num, opt=None): erode = erode_mask(f"erode_CSF_mask_{pipe_num}") erode.inputs.inputspec.erode_mm = cfg.nuisance_corrections["2-nuisance_regression"][ "regressor_masks" ]["erode_csf"]["csf_erosion_mm"] erode.inputs.inputspec.erode_prop = cfg.nuisance_corrections[ "2-nuisance_regression" ]["regressor_masks"]["erode_csf"]["csf_erosion_prop"] erode.inputs.inputspec.mask_erode_mm = cfg.nuisance_corrections[ "2-nuisance_regression" ]["regressor_masks"]["erode_csf"]["csf_mask_erosion_mm"] node, out = strat_pool.get_data(["label-CSF_desc-preproc_mask", "label-CSF_mask"]) wf.connect(node, out, erode, "inputspec.mask") node, out = strat_pool.get_data("space-T1w_desc-brain_mask") wf.connect(node, out, erode, "inputspec.brain_mask") outputs = {"label-CSF_desc-eroded_mask": (erode, "outputspec.eroded_mask")} return (wf, outputs) @nodeblock( name="erode_mask_GM", switch=[ ["nuisance_corrections", "2-nuisance_regression", "create_regressors"], [ "nuisance_corrections", "2-nuisance_regression", "regressor_masks", "erode_gm", "run", ], ], inputs=[["label-GM_desc-preproc", "label-GM_mask"]], outputs=["label-GM_desc-eroded_mask"], ) def erode_mask_GM(wf, cfg, strat_pool, pipe_num, opt=None): erode = erode_mask(f"erode_GM_mask_{pipe_num}") erode.inputs.inputspec.erode_mm = cfg.nuisance_corrections["2-nuisance_regression"][ "regressor_masks" ]["erode_gm"]["gm_erosion_mm"] erode.inputs.inputspec.erode_prop = cfg.nuisance_corrections[ "2-nuisance_regression" ]["regressor_masks"]["erode_gm"]["gm_erosion_prop"] erode.inputs.inputspec.mask_erode_mm = cfg.nuisance_corrections[ "2-nuisance_regression" ]["regressor_masks"]["erode_gm"]["gm_mask_erosion_mm"] node, out = strat_pool.get_data(["label-GM_desc-preproc_mask", "label-GM_mask"]) wf.connect(node, out, erode, "inputspec.mask") outputs = {"label-GM_desc-eroded_mask": (erode, "outputspec.eroded_mask")} return (wf, outputs) @nodeblock( name="erode_mask_WM", switch=[ ["nuisance_corrections", "2-nuisance_regression", "create_regressors"], [ "nuisance_corrections", "2-nuisance_regression", "regressor_masks", "erode_wm", "run", ], ], inputs=[ (["label-WM_desc-preproc_mask", "label-WM_mask"], "space-T1w_desc-brain_mask") ], outputs=["label-WM_desc-eroded_mask"], ) def erode_mask_WM(wf, cfg, strat_pool, pipe_num, opt=None): erode = erode_mask(f"erode_WM_mask_{pipe_num}") erode.inputs.inputspec.erode_mm = cfg.nuisance_corrections["2-nuisance_regression"][ "regressor_masks" ]["erode_wm"]["wm_erosion_mm"] erode.inputs.inputspec.erode_prop = cfg.nuisance_corrections[ "2-nuisance_regression" ]["regressor_masks"]["erode_wm"]["wm_erosion_prop"] erode.inputs.inputspec.mask_erode_mm = cfg.nuisance_corrections[ "2-nuisance_regression" ]["regressor_masks"]["erode_wm"]["wm_mask_erosion_mm"] node, out = strat_pool.get_data(["label-WM_desc-preproc_mask", "label-WM_mask"]) wf.connect(node, out, erode, "inputspec.mask") node, out = strat_pool.get_data("space-T1w_desc-brain_mask") wf.connect(node, out, erode, "inputspec.brain_mask") outputs = {"label-WM_desc-eroded_mask": (erode, "outputspec.eroded_mask")} return (wf, outputs) @nodeblock( name="nuisance_regressors_generation_EPItemplate", config=["nuisance_corrections", "2-nuisance_regression"], switch=["create_regressors"], option_key="Regressors", option_val="USER-DEFINED", inputs=[ ( "desc-preproc_bold", "desc-brain_bold", "space-bold_desc-brain_mask", "desc-movementParameters_motion", "framewise-displacement-jenkinson", "framewise-displacement-power", "dvars", ["space-bold_desc-eroded_mask", "space-bold_desc-brain_mask"], [ "space-bold_label-CSF_desc-eroded_mask", "space-bold_label-CSF_desc-preproc_mask", "space-bold_label-CSF_mask", ], [ "space-bold_label-WM_desc-eroded_mask", "space-bold_label-WM_desc-preproc_mask", "space-bold_label-WM_mask", ], [ "space-bold_label-GM_desc-eroded_mask", "space-bold_label-GM_desc-preproc_mask", "space-bold_label-GM_mask", ], "from-EPItemplate_to-bold_mode-image_desc-linear_xfm", "from-bold_to-EPItemplate_mode-image_desc-linear_xfm", ), "lateral-ventricles-mask", "TR", ], outputs=["desc-confounds_timeseries", "censor-indices"], ) def nuisance_regressors_generation_EPItemplate(wf, cfg, strat_pool, pipe_num, opt=None): return nuisance_regressors_generation(wf, cfg, strat_pool, pipe_num, opt, "bold") @nodeblock( name="nuisance_regressors_generation_T1w", config=["nuisance_corrections", "2-nuisance_regression"], switch=["create_regressors"], option_key="Regressors", option_val="USER-DEFINED", inputs=[ ( "desc-preproc_bold", "space-bold_desc-brain_mask", "from-bold_to-T1w_mode-image_desc-linear_xfm", "desc-movementParameters_motion", "framewise-displacement-jenkinson", "framewise-displacement-power", "dvars", "desc-brain_T1w", ["space-T1w_desc-eroded_mask", "space-T1w_desc-brain_mask"], [ "label-CSF_desc-eroded_mask", "label-CSF_desc-preproc_mask", "label-CSF_mask", ], [ "label-WM_desc-eroded_mask", "label-WM_desc-preproc_mask", "label-WM_mask", ], [ "label-GM_desc-eroded_mask", "label-GM_desc-preproc_mask", "label-GM_mask", ], "from-template_to-T1w_mode-image_desc-linear_xfm", "from-T1w_to-template_mode-image_desc-linear_xfm", ), "lateral-ventricles-mask", "TR", ], outputs=["desc-confounds_timeseries", "censor-indices"], ) def nuisance_regressors_generation_T1w(wf, cfg, strat_pool, pipe_num, opt=None): return nuisance_regressors_generation(wf, cfg, strat_pool, pipe_num, opt, "T1w") def nuisance_regressors_generation( wf: Workflow, cfg: Configuration, strat_pool: ResourcePool, pipe_num: int, opt: dict, space: Literal["T1w", "bold"], ) -> tuple[Workflow, dict]: """Generate nuisance regressors. Parameters ---------- wf : ~nipype.pipeline.engine.workflows.Workflow cfg : ~CPAC.utils.configuration.Configuration strat_pool : ~CPAC.pipeline.engine.ResourcePool pipe_num : int opt : dict space : str T1w or bold Returns ------- wf : nipype.pipeline.engine.workflows.Workflow outputs : dict """ prefixes = [f"space-{space}_"] * 2 reg_tool = None if space == "T1w": prefixes[0] = "" if strat_pool.check_rpool("from-template_to-T1w_mode-image_desc-linear_xfm"): xfm_prov = strat_pool.get_cpac_provenance( "from-template_to-T1w_mode-image_desc-linear_xfm" ) reg_tool = check_prov_for_regtool(xfm_prov) elif space == "bold": xfm_prov = strat_pool.get_cpac_provenance( "from-EPItemplate_to-bold_mode-image_desc-linear_xfm" ) reg_tool = check_prov_for_regtool(xfm_prov) if reg_tool is not None: use_ants = reg_tool == "ants" else: use_ants = False if cfg.switch_is_on( [ "functional_preproc", "motion_estimates_and_correction", "motion_estimate_filter", "run", ] ): wf_name = ( f'nuisance_regressors_{opt["Name"]}_filt-' f'{strat_pool.filter_name(cfg)}_{pipe_num}' ) else: wf_name = f'nuisance_regressors_{opt["Name"]}_{pipe_num}' ventricle = strat_pool.check_rpool("lateral-ventricles-mask") csf_mask = strat_pool.check_rpool( [ f"{prefixes[0]}label-CSF_desc-eroded_mask", f"{prefixes[0]}label-CSF_desc-preproc_mask", f"{prefixes[0]}label-CSF_mask", ] ) regressors = create_regressor_workflow( opt, use_ants, ventricle_mask_exist=ventricle, all_bold=space == "bold", csf_mask_exist=csf_mask, name=wf_name, ) node, out = strat_pool.get_data("desc-preproc_bold") wf.connect(node, out, regressors, "inputspec.functional_file_path") node, out = strat_pool.get_data("space-bold_desc-brain_mask") wf.connect(node, out, regressors, "inputspec.functional_brain_mask_file_path") if strat_pool.check_rpool(f"desc-brain_{space}"): node, out = strat_pool.get_data(f"desc-brain_{space}") wf.connect(node, out, regressors, "inputspec.anatomical_file_path") if strat_pool.check_rpool( [f"{prefixes[1]}desc-eroded_mask", f"{prefixes[1]}desc-brain_mask"] ): node, out = strat_pool.get_data( [f"{prefixes[1]}desc-eroded_mask", f"{prefixes[1]}desc-brain_mask"] ) wf.connect( node, out, regressors, "inputspec.anatomical_eroded_brain_mask_file_path" ) else: IFLOGGER.warning("No %s-space brain mask found in resource pool.", space) if strat_pool.check_rpool( [ f"{prefixes[0]}label-CSF_desc-eroded_mask", f"{prefixes[0]}label-CSF_desc-preproc_mask", f"{prefixes[0]}label-CSF_mask", ] ): node, out = strat_pool.get_data( [ f"{prefixes[0]}label-CSF_desc-eroded_mask", f"{prefixes[0]}label-CSF_desc-preproc_mask", f"{prefixes[0]}label-CSF_mask", ] ) wf.connect(node, out, regressors, "inputspec.csf_mask_file_path") else: IFLOGGER.warning("No %s-space CSF mask found in resource pool.", space) if strat_pool.check_rpool( [ f"{prefixes[0]}label-WM_desc-eroded_mask", f"{prefixes[0]}label-WM_desc-preproc_mask", f"{prefixes[0]}label-WM_mask", ] ): node, out = strat_pool.get_data( [ f"{prefixes[0]}label-WM_desc-eroded_mask", f"{prefixes[0]}label-WM_desc-preproc_mask", f"{prefixes[0]}label-WM_mask", ] ) wf.connect(node, out, regressors, "inputspec.wm_mask_file_path") else: IFLOGGER.warning("No %s-space WM mask found in resource pool.", space) if strat_pool.check_rpool( [ f"{prefixes[0]}label-GM_desc-eroded_mask", f"{prefixes[0]}label-GM_desc-preproc_mask", f"{prefixes[0]}label-GM_mask", ] ): node, out = strat_pool.get_data( [ f"{prefixes[0]}label-GM_desc-eroded_mask", f"{prefixes[0]}label-GM_desc-preproc_mask", f"{prefixes[0]}label-GM_mask", ] ) wf.connect(node, out, regressors, "inputspec.gm_mask_file_path") else: IFLOGGER.warning("No %s-space GM mask found in resource pool.", space) if ventricle: node, out = strat_pool.get_data("lateral-ventricles-mask") wf.connect(node, out, regressors, "inputspec.lat_ventricles_mask_file_path") if space == "T1w": if strat_pool.check_rpool("from-bold_to-T1w_mode-image_desc-linear_xfm"): node, out = strat_pool.get_data( "from-bold_to-T1w_mode-image_desc-linear_xfm" ) wf.connect( node, out, regressors, "inputspec.func_to_anat_linear_xfm_file_path" ) # invert func2anat matrix to get anat2func_linear_xfm anat2func_linear_xfm = pe.Node( interface=fsl.ConvertXFM(), name=f'anat_to_func_linear_xfm_' f'{opt["Name"]}_{pipe_num}', ) anat2func_linear_xfm.inputs.invert_xfm = True wf.connect(node, out, anat2func_linear_xfm, "in_file") wf.connect( anat2func_linear_xfm, "out_file", regressors, "inputspec.anat_to_func_linear_xfm_file_path", ) if strat_pool.check_rpool("from-template_to-T1w_mode-image_desc-linear_xfm"): node, out = strat_pool.get_data( "from-template_to-T1w_mode-image_desc-linear_xfm" ) wf.connect( node, out, regressors, "inputspec.mni_to_anat_linear_xfm_file_path" ) if strat_pool.check_rpool("from-T1w_to-template_mode-image_desc-linear_xfm"): node, out = strat_pool.get_data( "from-T1w_to-template_mode-image_desc-linear_xfm" ) wf.connect( node, out, regressors, "inputspec.anat_to_mni_linear_xfm_file_path" ) elif space == "bold": if strat_pool.check_rpool( "from-EPItemplate_to-bold_mode-image_desc-linear_xfm" ): node, out = strat_pool.get_data( "from-EPItemplate_to-bold_mode-image_desc-linear_xfm" ) wf.connect( node, out, regressors, "inputspec.mni_to_anat_linear_xfm_file_path" ) wf.connect( node, out, regressors, "inputspec.anat_to_func_linear_xfm_file_path" ) if strat_pool.check_rpool( "from-bold_to-EPItemplate_mode-image_desc-linear_xfm" ): node, out = strat_pool.get_data( "from-bold_to-EPItemplate_mode-image_desc-linear_xfm" ) wf.connect( node, out, regressors, "inputspec.anat_to_mni_linear_xfm_file_path" ) wf.connect( node, out, regressors, "inputspec.func_to_anat_linear_xfm_file_path" ) if strat_pool.check_rpool("desc-movementParameters_motion"): node, out = strat_pool.get_data("desc-movementParameters_motion") wf.connect(node, out, regressors, "inputspec.motion_parameters_file_path") if strat_pool.check_rpool("framewise-displacement-jenkinson"): node, out = strat_pool.get_data("framewise-displacement-jenkinson") wf.connect(node, out, regressors, "inputspec.fd_j_file_path") if strat_pool.check_rpool("framewise-displacement-power"): node, out = strat_pool.get_data("framewise-displacement-power") wf.connect(node, out, regressors, "inputspec.fd_p_file_path") if strat_pool.check_rpool("dvars"): node, out = strat_pool.get_data("dvars") wf.connect(node, out, regressors, "inputspec.dvars_file_path") node, out = strat_pool.get_data("TR") wf.connect(node, out, regressors, "inputspec.tr") outputs = { "desc-confounds_timeseries": (regressors, "outputspec.regressors_file_path"), "censor-indices": (regressors, "outputspec.censor_indices"), } return (wf, outputs) def nuisance_regression(wf, cfg, strat_pool, pipe_num, opt, space, res=None): """Nuisance regression in native (BOLD) or template space. Parameters ---------- wf, cfg, strat_pool, pipe_num, opt pass through from Node Block space : str native or template Returns ------- wf : nipype.pipeline.engine.workflows.Workflow outputs : dict """ opt = strat_pool.regressor_dct(cfg) bandpass = "Bandpass" in opt bandpass_before = ( bandpass and cfg[ "nuisance_corrections", "2-nuisance_regression", "bandpass_filtering_order" ] == "Before" ) name_suff = ( f'space-{space}_reg-{opt["Name"]}_{pipe_num}' if res is None else f'space-{space}_res-{res}_reg-{opt["Name"]}_{pipe_num}' ) nuis_name = f"nuisance_regression_{name_suff}" nuis = create_nuisance_regression_workflow(opt, name=nuis_name) if bandpass_before: nofilter_nuis = nuis.clone(name=f"{nuis.name}-noFilter") desc_keys = ("desc-preproc_bold", "desc-cleaned_bold", "desc-denoisedNofilt_bold") if space != "native": new_label = f"space-{space}" if res: new_label = f"{new_label}_res-{res}" desc_keys = tuple(f"{new_label}_{key}" for key in desc_keys) if space == "template": # sometimes mm dimensions match but the voxel dimensions don't # so here we align the mask to the resampled data before applying match_grid = pe.Node( afni.Resample(), name=f"align_template_mask_to_template_data_{name_suff}" ) match_grid.inputs.outputtype = "NIFTI_GZ" match_grid.inputs.resample_mode = "Cu" node, out = strat_pool.get_data("FSL-AFNI-brain-mask") wf.connect(node, out, match_grid, "in_file") node, out = strat_pool.get_data(desc_keys[0]) wf.connect(node, out, match_grid, "master") wf.connect( match_grid, "out_file", nuis, "inputspec.functional_brain_mask_file_path" ) if bandpass_before: wf.connect( match_grid, "out_file", nofilter_nuis, "inputspec.functional_brain_mask_file_path", ) else: node, out = strat_pool.get_data("space-bold_desc-brain_mask") wf.connect(node, out, nuis, "inputspec.functional_brain_mask_file_path") if bandpass_before: wf.connect( node, out, nofilter_nuis, "inputspec.functional_brain_mask_file_path" ) node, out = strat_pool.get_data(["desc-confounds_timeseries", "parsed_regressors"]) wf.connect(node, out, nuis, "inputspec.regressor_file") if bandpass_before: wf.connect(node, out, nofilter_nuis, "inputspec.regressor_file") if strat_pool.check_rpool("framewise-displacement-jenkinson"): node, out = strat_pool.get_data("framewise-displacement-jenkinson") wf.connect(node, out, nuis, "inputspec.fd_j_file_path") if bandpass_before: wf.connect(node, out, nofilter_nuis, "inputspec.fd_j_file_path") if strat_pool.check_rpool("framewise-displacement-power"): node, out = strat_pool.get_data("framewise-displacement-power") wf.connect(node, out, nuis, "inputspec.fd_p_file_path") if bandpass_before: wf.connect(node, out, nofilter_nuis, "inputspec.fd_p_file_path") if strat_pool.check_rpool("dvars"): node, out = strat_pool.get_data("dvars") wf.connect(node, out, nuis, "inputspec.dvars_file_path") if bandpass_before: wf.connect(node, out, nofilter_nuis, "inputspec.dvars_file_path") if bandpass: filt = filtering_bold_and_regressors( opt, name=f"filtering_bold_and_regressors_{name_suff}" ) filt.inputs.inputspec.nuisance_selectors = opt node, out = strat_pool.get_data( ["desc-confounds_timeseries", "parsed_regressors"] ) wf.connect(node, out, filt, "inputspec.regressors_file_path") if space == "template": wf.connect( match_grid, "out_file", filt, "inputspec.functional_brain_mask_file_path", ) else: node, out = strat_pool.get_data("space-bold_desc-brain_mask") wf.connect(node, out, filt, "inputspec.functional_brain_mask_file_path") node, out = strat_pool.get_data("TR") wf.connect(node, out, filt, "inputspec.tr") if ( cfg[ "nuisance_corrections", "2-nuisance_regression", "bandpass_filtering_order", ] == "After" ): node, out = strat_pool.get_data(desc_keys[0]) wf.connect(node, out, nuis, "inputspec.functional_file_path") wf.connect( nuis, "outputspec.residual_file_path", filt, "inputspec.functional_file_path", ) outputs = { desc_keys[0]: (filt, "outputspec.residual_file_path"), desc_keys[1]: (filt, "outputspec.residual_file_path"), desc_keys[2]: (nuis, "outputspec.residual_file_path"), "desc-confounds_timeseries": (filt, "outputspec.residual_regressor"), } elif bandpass_before: node, out = strat_pool.get_data(desc_keys[0]) wf.connect(node, out, filt, "inputspec.functional_file_path") wf.connect(node, out, nofilter_nuis, "inputspec.functional_file_path") wf.connect( filt, "outputspec.residual_file_path", nuis, "inputspec.functional_file_path", ) outputs = { desc_keys[0]: (nuis, "outputspec.residual_file_path"), desc_keys[1]: (nuis, "outputspec.residual_file_path"), desc_keys[2]: (nofilter_nuis, "outputspec.residual_file_path"), "desc-confounds_timeseries": (filt, "outputspec.residual_regressor"), } else: node, out = strat_pool.get_data(desc_keys[0]) wf.connect(node, out, nuis, "inputspec.functional_file_path") outputs = { desc_key: (nuis, "outputspec.residual_file_path") for desc_key in desc_keys } return (wf, outputs) @nodeblock( name="ingress_regressors", switch=[ ["nuisance_corrections", "2-nuisance_regression", "run"], ["nuisance_corrections", "2-nuisance_regression", "ingress_regressors", "run"], ], inputs=["pipeline-ingress_desc-confounds_timeseries"], outputs=["parsed_regressors"], ) def ingress_regressors(wf, cfg, strat_pool, pipe_num, opt=None): regressors_list = cfg.nuisance_corrections["2-nuisance_regression"][ "ingress_regressors" ]["Regressors"]["Columns"] # Will need to generalize the name node, out = strat_pool.get_data("pipeline-ingress_desc-confounds_timeseries") if not regressors_list: IFLOGGER.warning( "\n[!] Ingress regressors is on, but no regressors provided. " "The whole regressors file will be applied, but it may be" "too large for the timeseries data!" ) outputs = {"parsed_regressors": (node, out)} else: ingress_imports = [ "import numpy as np", "import numpy as np", "import os", "import CPAC", ] ingress_regressors = pe.Node( Function( input_names=["regressors_file", "regressors_list"], output_names=["parsed_regressors"], function=parse_regressors, imports=ingress_imports, ), name="parse_regressors_file", ) wf.connect(node, out, ingress_regressors, "regressors_file") ingress_regressors.inputs.regressors_list = regressors_list outputs = {"parsed_regressors": (ingress_regressors, "parsed_regressors")} return wf, outputs def parse_regressors(regressors_file, regressors_list): """ Parse regressors file from outdir ingress. Parameters ---------- confounds / regressors file : string Path of regressors / confounds file. regressors list : list, can be empty List containing names of regressors to select Returns ------- parsed_regressors: dataframe Regressors """ import pandas as pd with open(regressors_file, "r"): full_file = pd.read_table(regressors_file) parsed_regressors = pd.DataFrame() header = [] for regressor in regressors_list: # Look through first 3 rows in case the header is nonstandard if regressor in full_file.iloc[:3]: header.append(regressor) parsed_regressors[regressor] = full_file.loc[:, regressor] else: IFLOGGER.warning( f"\n[!] Regressor {regressor} not found in {regressors_file}" ) if parsed_regressors.empty: msg = f"Regressors not found in {regressors_file}" raise Exception(msg) regressors_path = os.path.join(os.getcwd(), "parsed_regressors.1D") parsed_regressors = parsed_regressors.to_numpy() check_vals = np.any(np.isnan(parsed_regressors)) if check_vals: msg = ( '\n[!] This regressors file contains "N/A" values.\n' "[!] Please choose a different dataset or " "remove regressors with those values." ) raise Exception(msg) with open(regressors_path, "w") as ofd: # write out the header information ofd.write(f"# C-PAC {CPAC.__version__}\n") ofd.write("# Ingressed nuisance regressors:\n") np.savetxt(ofd, parsed_regressors, fmt="%.18f", delimiter="\t") return regressors_path @nodeblock( name="nuisance_regression_native", config=["nuisance_corrections", "2-nuisance_regression"], switch=["run"], option_key="space", option_val="native", inputs=[ ( "desc-preproc_bold", ["desc-confounds_timeseries", "parsed_regressors"], "space-bold_desc-brain_mask", "framewise-displacement-jenkinson", "framewise-displacement-power", "dvars", ), "TR", ], outputs={ "desc-preproc_bold": { "Description": "Preprocessed BOLD image that was nuisance-regressed in native space" }, "desc-cleaned_bold": { "Description": "Preprocessed BOLD image that was nuisance-regressed in native space" }, "desc-denoisedNofilt_bold": { "Description": "Preprocessed BOLD image that was nuisance-regressed in native space, but without frequency filtering." }, "desc-confounds_timeseries": { "Description": "Regressors that were applied in native space" }, }, ) def nuisance_regression_native(wf, cfg, strat_pool, pipe_num, opt=None): return nuisance_regression(wf, cfg, strat_pool, pipe_num, opt, "native") @nodeblock( name="nuisance_regression_template", config=["nuisance_corrections", "2-nuisance_regression"], switch=["run"], option_key="space", option_val="template", inputs=[ ( "desc-stc_bold", "space-template_desc-preproc_bold", "space-template_res-derivative_desc-preproc_bold", "desc-movementParameters_motion", ["desc-confounds_timeseries", "parsed_regressors"], "FSL-AFNI-brain-mask", "framewise-displacement-jenkinson", "framewise-displacement-power", "dvars", ), "TR", ], outputs={ "space-template_desc-preproc_bold": { "Description": "Preprocessed BOLD image that was nuisance-regressed in template space" }, "space-template_res-derivative_desc-preproc_bold": { "Description": "Preprocessed BOLD image that was nuisance-regressed in template space" }, "space-template_desc-cleaned_bold": { "Description": "Preprocessed BOLD image that was nuisance-regressed in template space" }, "space-template_res-derivative_desc-cleaned_bold": { "Description": "Preprocessed BOLD image that was nuisance-regressed in template space" }, "space-template_desc-denoisedNofilt_bold": { "Description": "Preprocessed BOLD image that was nuisance-regressed in template space, but without frequency filtering." }, "space-template_res-derivative_desc-denoisedNofilt_bold": { "Description": "Preprocessed BOLD image that was nuisance-regressed in template space, but without frequency filtering." }, "desc-confounds_timeseries": { "Description": "Regressors that were applied in template space" }, }, ) def nuisance_regression_template(wf, cfg, strat_pool, pipe_num, opt=None): """Apply nuisance regression to template-space image.""" wf, outputs = nuisance_regression(wf, cfg, strat_pool, pipe_num, opt, "template") if strat_pool.check_rpool("space-template_res-derivative_desc-preproc_bold"): wf, res_outputs = nuisance_regression( wf, cfg, strat_pool, pipe_num, opt, "template", "derivative" ) outputs.update(res_outputs) return (wf, outputs) @nodeblock( name="erode_mask_bold", switch=[ [ "nuisance_corrections", "2-nuisance_regression", "regressor_masks", "erode_anatomical_brain_mask", "run", ], [ "registration_workflows", "functional_registration", "EPI_registration", "run", ], ], inputs=[ ( "space-bold_desc-brain_mask", ["space-bold_label-CSF_desc-preproc_mask", "space-bold_label-CSF_mask"], ) ], outputs=["space-bold_desc-eroded_mask"], ) def erode_mask_bold(wf, cfg, strat_pool, pipe_num, opt=None): erode = erode_mask(f"erode_T1w_mask_{pipe_num}", segmentmap=False) erode.inputs.inputspec.mask_erode_mm = cfg.nuisance_corrections[ "2-nuisance_regression" ]["regressor_masks"]["erode_anatomical_brain_mask"]["brain_mask_erosion_mm"] erode.inputs.inputspec.erode_prop = cfg.nuisance_corrections[ "2-nuisance_regression" ]["regressor_masks"]["erode_anatomical_brain_mask"]["brain_mask_erosion_prop"] node, out = strat_pool.get_data("space-bold_desc-brain_mask") wf.connect(node, out, erode, "inputspec.brain_mask") node, out = strat_pool.get_data( ["space-bold_label-CSF_desc-preproc_mask", "space-bold_label-CSF_mask"] ) wf.connect(node, out, erode, "inputspec.mask") outputs = {"space-bold_desc-eroded_mask": (erode, "outputspec.eroded_mask")} return (wf, outputs) @nodeblock( name="erode_mask_boldCSF", switch=[ [ "nuisance_corrections", "2-nuisance_regression", "regressor_masks", "erode_csf", "run", ], [ "registration_workflows", "functional_registration", "EPI_registration", "run", ], ], inputs=[ ( ["space-bold_label-CSF_desc-preproc_mask", "space-bold_label-CSF_mask"], "space-bold_desc-brain_mask", ) ], outputs=["space-bold_label-CSF_desc-eroded_mask"], ) def erode_mask_boldCSF(wf, cfg, strat_pool, pipe_num, opt=None): erode = erode_mask(f"erode_CSF_mask_{pipe_num}") erode.inputs.inputspec.erode_mm = cfg.nuisance_corrections["2-nuisance_regression"][ "regressor_masks" ]["erode_csf"]["csf_erosion_mm"] erode.inputs.inputspec.erode_prop = cfg.nuisance_corrections[ "2-nuisance_regression" ]["regressor_masks"]["erode_csf"]["csf_erosion_prop"] erode.inputs.inputspec.mask_erode_mm = cfg.nuisance_corrections[ "2-nuisance_regression" ]["regressor_masks"]["erode_csf"]["csf_mask_erosion_mm"] node, out = strat_pool.get_data( ["space-bold_label-CSF_desc-preproc_mask", "space-bold_label-CSF_mask"] ) wf.connect(node, out, erode, "inputspec.mask") node, out = strat_pool.get_data("space-bold_desc-brain_mask") wf.connect(node, out, erode, "inputspec.brain_mask") outputs = { "space-bold_label-CSF_desc-eroded_mask": (erode, "outputspec.eroded_mask") } return (wf, outputs) @nodeblock( name="erode_mask_boldGM", switch=[ [ "nuisance_corrections", "2-nuisance_regression", "regressor_masks", "erode_gm", "run", ], [ "registration_workflows", "functional_registration", "EPI_registration", "run", ], ], inputs=[["space-bold_label-GM_desc-preproc", "space-bold_label-GM_mask"]], outputs=["space-bold_label-GM_desc-eroded_mask"], ) def erode_mask_boldGM(wf, cfg, strat_pool, pipe_num, opt=None): erode = erode_mask(f"erode_GM_mask_{pipe_num}") erode.inputs.inputspec.erode_mm = cfg.nuisance_corrections["2-nuisance_regression"][ "regressor_masks" ]["erode_gm"]["gm_erosion_mm"] erode.inputs.inputspec.erode_prop = cfg.nuisance_corrections[ "2-nuisance_regression" ]["regressor_masks"]["erode_gm"]["gm_erosion_prop"] erode.inputs.inputspec.mask_erode_mm = cfg.nuisance_corrections[ "2-nuisance_regression" ]["regressor_masks"]["erode_gm"]["gm_mask_erosion_mm"] node, out = strat_pool.get_data( ["space-bold_label-GM_desc-preproc_mask", "space-bold_label-GM_mask"] ) wf.connect(node, out, erode, "inputspec.mask") outputs = { "space-bold_label-GM_desc-eroded_mask": (erode, "outputspec.eroded_mask") } return (wf, outputs) @nodeblock( name="erode_mask_boldWM", switch=[ [ "nuisance_corrections", "2-nuisance_regression", "regressor_masks", "erode_wm", "run", ], [ "registration_workflows", "functional_registration", "EPI_registration", "run", ], ], inputs=[ ( ["space-bold_label-WM_desc-preproc_mask", "space-bold_label-WM_mask"], "space-bold_desc-brain_mask", ) ], outputs=["space-bold_label-WM_desc-eroded_mask"], ) def erode_mask_boldWM(wf, cfg, strat_pool, pipe_num, opt=None): erode = erode_mask(f"erode_WM_mask_{pipe_num}") erode.inputs.inputspec.erode_mm = cfg.nuisance_corrections["2-nuisance_regression"][ "regressor_masks" ]["erode_wm"]["wm_erosion_mm"] erode.inputs.inputspec.erode_prop = cfg.nuisance_corrections[ "2-nuisance_regression" ]["regressor_masks"]["erode_wm"]["wm_erosion_prop"] erode.inputs.inputspec.mask_erode_mm = cfg.nuisance_corrections[ "2-nuisance_regression" ]["regressor_masks"]["erode_wm"]["wm_mask_erosion_mm"] node, out = strat_pool.get_data( ["space-bold_label-WM_desc-preproc_mask", "space-bold_label-WM_mask"] ) wf.connect(node, out, erode, "inputspec.mask") node, out = strat_pool.get_data("space-bold_desc-brain_mask") wf.connect(node, out, erode, "inputspec.brain_mask") outputs = { "space-bold_label-WM_desc-eroded_mask": (erode, "outputspec.eroded_mask") } return (wf, outputs)